

542 APC

Audio Processing Core FM & HD audio

OWNER'S MANUAL

www.solidynepro.com

Sumario

Acerca de este manual	7
Gracias por elegirnos	7
Embalaje y accesorios	7
Recomendaciones para el montaje	7
REFERENCIAS	7

Sección 1 Guía rápida de instalación.....9

Sección 2	Instalación y conexiones	13
2.1 Instala	ción	13
2.1.1 Alimer	ntación	13
2.2 Panel t	trasero y conexiones de audio	13
2.2.1 Conex	tiones de audio analógicas	13
2.2.1.1 E	ntradas y salidas sobre XLR	13
2.2.1.2 E	ntradas y salidas sobre RJ45	13
2.2.2 Conex	iones de audio digital	14
2.2.2.1 E	ntrada/salida AES-3	14
2.2.2.2 P	uerto para streaming entrante (opcional)	14
2.3 Salidas	5 MPX	14
2.4 Antena	a receptora de FM	14
2.5 Puerto	para control vía web	15
2.6 GPIO		15
2.6.1 Conex	ión y usos de la GPI	15
2.6.2 Conex	ión y usos de la GPO	15
2.7 Actuali	izaciones y modelo	15
2.7.1 Proced	dimiento (update)	15

Sección 3 Acceso y configuraciones.....17

3.1 Generalidades	17
3.1.1 Ajustes de audio y de sistema	17
3.1.2 Contraseña	17
3.1.3 Formas de acceso	17
3.2 Comando desde el rack	17
3.2.1 Pantalla inicial y presets	17
3.2.1.1 Pantalla de bloqueo	17
3.2.2 ENTRADAS (INPUTS)	18
3.2.2.1 Selección de entrada (desde panel frontal)	18
3.2.3 MONITOR DE SALIDAS (OUTPUTS)	18
3.2.4 MONITOR DE PROCESADO	18
3.2.5 AURICULARES (headphones)	18
3.2.6 CONFIGURACIÓN DE SISTEMA	18
3.2.6.1 Configuración de la ENTRADA	18
3.2.6.2 Configuración de las SALIDAS	19

3.2.6.3 STEREO GENERATOR	19
3.2.6.4 RECEPTOR DE FM	
3 2 6 5 ETHERNET	19
	10
3.2.7 MONITOR DE FM	19
	10
3.3 Acceso y control via red	19
3.3.1 Acceso desde la red local	19
3.3.2 Acceso remoto vía Internet	20
3.4 Interfaz de Control WFB	20
3.4.1 Pantallas de Estado	20
3.4.1.1 Zona de monitoreo principal	20
3.4.1.2 Preset and Sound Wizard	
3.4.1.3 FM receiver – Monitor Analizer	21
3.4.1.4 Audio Inputs and Outputs	21
3.4.2 Acceso avanzado (SETUP)	21
3.5 Entradas de audio	21
3 5 1 GANANCIA	21
3 5 2 TRIM R	
3.5.3 ST/MONO	
2.5.4 Entrada principal y alternativas	ZI 21
2.5.4 Elitiada principal y alternativas	
3.5.5 FILLIOS de la entrada	ZZ
3 6 Salidas do audio	22
5.0 Saliuas de audio	
2.7.FM sectored MDV	
3.7 FM output - MPX	
3.7.1 Nivel de MPX	22
3.7.2 Calibrador – Nivel de modulación	22
3.7.3 PRF-FMPHASIS	
3 7 1 Tono Piloto v portadora RDS	
2.7.5 Componención de la calida MDV	ב2 בר
	23
3.7.6 Control de potencia MPX ITU BS.412	23
3.7.6.1 Presets de procesado y BS.412	23
	~ ~ ~
3.8 Ajustar la modulación en FM	24
3.8.1 Sobre los picos de modulación	24
3.8.2 Medición y ajuste de la separación estéreo	24
3 8 3 Sobre la transmisión en mono	25
3 9 Monitor analizador de EM	25
3.9.1 Sintonizador de FM	25
3.9.1.1 DIAL SCAN	
3.9.2 Análisis de transmisión	26
3.9.3 Separación de canales, distorsión y SNR	27
3.9.4 REPORTE TÉCNICO de transmisión	27
3.10 RDS	27
2.10.1 Configuración básico del DDC	
3.10.1 Configuración basica del RDS	Z/
3.10.2 Uso avanzado - Magic RDS	
3.10.3 Conexión de RDS al transmisor	28
3.11 Ajustes del sistema	29
3.11.1 GPIO CONFIG	29
3.11.2 SECURITY	
3 11 3 User interface (Interfaz dol ucuario)	<u>רב</u> סמ
3.11.5 TECHNICAL REPORT	29

3.12 Alarmas, estado y registros	29
3.12.1 Alarmas	29
3.12.2 Status y Logs	30
3.13 Lite Commander	

Sección 4	Procesado de audio	31
4.1 WIZAR	D	31

4.2 Enhancers	
4.2.1 Voice symmetrizer	
4.2.2 Expander	32
4.2.3 Bass enhancer	
4.2.4 Stereo enhancer	32

4.3 Enhancer EQ	32
-----------------	----

4.4	Control	Automático	de	Ganancia	de	Banda
-----	---------	------------	----	----------	----	-------

Ancha (WB-AGC)	
4.4.1 Nivel de referencia (Target level)	33
4.4.2 Retención (Hold)	
4.4.3 Tiempo de ataque del WB-AGC	33
4.4.4 Tiempo de recuperación del WB-AGC	33
4.4.5 Outside window (fast times)	

4.5 AGC multibanda	34
4.5.1 Dynamic EQ (niveles "referencia")	34
4.5.2 Enlace entre bandas (BAND LINK)	35
4.5.3 Ataque, recuperación y retención	

4.5.5 Adduc, recuperation y recencion	
4.6 Compresión dinámica	35
4.6.1 COMPRESOR MULTIBANDA	36
UMBRAL (THS)	
RATIO	36
ATAQUE	
Recuperación (RELEASE)	
RETENCIÓN (HOLD)	36
4.6.2 LIMITADOR MULTIBANDA	36
Umbral (THS) y DRIVE	
Ataque (ATK), Hold y Release	
4.7 Density EQ y Clippers	37
4.7.1 BAND CLIPPERS	37

4.7.2 Limitador de banda ancha (WB LIMITER)	37
4.7.3 Recortador de MPX (MPX cliper)	37

4.8 Gestión de los presets	38
4.8.1 Crear presets de procesado	38
4.8.2 Administrar presets	38
4.8.2.1 Exportar/importar presets	
4.9 Presets: ajustes de sonido	
4.9.1 AJUSTES PARA VOCES	
4.9.2 SOFT PROCESSING	
4.9.3 DeepBass/XtendedBass	40
4.9.4 Vocal Music	40
4.9.5 MaxLoudness	40
4.9.6 Presets optimizados para ITU BS.412	40

Sección 5 Equipos con servicios AoIP (STREAMING y DANTE AoIP)......41

5.1	Resumen o	de	prestaciones	41
-----	-----------	----	--------------	----

5.2 Equipos con opción streamer	41
5.2.1 Accediendo desde una LAN	41
5.2.2 Accediendo remotamente vía Internet	41
5.2.2.1 Activar el re-direccionamiento	42
5.2.3 Interfaz de control integrada	42
5.2.4 Audio stream (STREAM CFG)	43
5.2.5 ENLACE (STL) / DOWN-STREAM RTP	43
5.2.5.1 Acerca de la configuración de la red	43
5.2.5.2 Configurar un stream RTP entrante	43
5.2.5.3 Configuración RTP en los estudios	44
5.2.6 Recepción de streaming público	44
5.2.7 UP-STREAM (Icecast/Shoutcast Tx)	44
5.2.8 RTP LINK (tx)	45
5.2.9 Escucha remota	45
5.2.10 Services config	45
5.2.11 Actualizaciones simplificadas	46
5.2.11.1 Procedimiento	46
5.3 Modulo DANTE/AES67	46

Sección 6 Especificaciones técnicas.....47

Índice por Tareas

INSTALACIÓN Y CONEXIONES

Montar y energizar el equipo correctamente:	pág. 13 – 2.1 / 2.1.1
Seleccionar tensión de red:	pág. 13 – 2.1.1
Conectar entradas y salidas analógicas:	pág. 13 – 2.2.1
Conectar entradas y salidas digitales AES3:	pág. 14 – 2.2.2
Conectar antena receptora de FM:	pág. 14 – 2.4
Conectar a red local (Ethernet):	pág. 15 – 2.5 / pág. 20 – 3.4

CONTROL LOCAL Y PANEL FRONTAL

Encender y navegar pantallas desde el frente:	pág. 17 – 3.2
Seleccionar entrada activa desde panel frontal:	pág. 18 – 3.2.2
Ajustar ganancia de entrada:	pág. 18 – 3.2.6.1
Ajustar auriculares y fuente de escucha:	pág. 18 – 3.2.5

CONTROL WEB Y AJUSTES REMOTOS

Acceder al panel de control vía navegador:	pág. 19 – 3.3
Utilizar interfaz web para cambiar presets:	pág. 38 – 4.8
Supervisar niveles y estado desde web:	pág. 20 – 3.4
Modo avanzado SETUP:	pág. 21 – 3.4.2

PROCESADO DE AUDIO

Seleccionar y cambiar presets:	pág. 17 – 3.2.1 / pág. 38 – 4.8
Crear nuevos presets con WIZARD:	pág. 31 – 4.1 / pág. 38 – 4.8.1
Administrar presets existentes:	pág. 38 – 4.8.2
Descripción de los presets de fábrica:	pág. 39 – 4.9

AUDIO STREAMING Y AoIP

4 - 5.2.7

MODULACIÓN Y MPX

Ajustar nivel de salida MPX:	pág. 19 – 3.2.3.6 / pág. 22 – 3.7
Ajustar modulación FM:	pág. 24 – 3.8
Analizar transmisión FM:	pág. 25 – 3.9
Reporte técnico de la transmisión:	pág. 27 – 3.9.4
Mejorar alcance transmitiendo en MONO:	pág. 23 – 3.5.3

RDS Y ESTÁNDARES INTERNACIONALES

Configurar codificador RDS:	pág. 27 – 3.10
Cumplir con norma ITU BS.412:	pág. 23 – 3.3.6 / pág. 40 – 4.9.6
Loudness Units (EBU R128):	pág. 20 – 3.4.1.1 / pág. 29 – 3.11.3

GPIO Y AUTOMATIZACIÓN

Conmutar presets desde GPI:	pág. 15 – 2.6.1
Activar señal externa desde GPO:	pág. 15 – 2.6.2
Configurar GPIO desde interfaz:	pág. 29 – 3.11.1
Conmutación remota de presets y Mono/ST	pág. 30 – 3.13

ACTUALIZACIONES Y SEGURIDAD

Actualizar el firmware del equipo:	pág. 15 – 2.7.1
Realizar actualizaciones simplificadas (AoIP):	pág. 46 – 5.2.11
Activar contraseña de usuario:	pág. 17 – 3.1.2
Configurar contraseña:	pág. 29 – 3.11.2

FUNCIONES AVANZADAS

Ajustar AGC, compresores y limitadores:	pág. 33 – 4.4 / 4.5 / 4.6
Ajustar clippers y ecualizadores:	pág. 37 – 4.7
Configurar alarmas	pág. 29 – 3.12

Acerca de este manual

Manual	Junio de 2025
Firmware	5B - 2.11

Solidyne® Todos los derechos reservados. Ninguna parte de este manual se puede reproducir, copiar o transmitir en cualquier forma o por ningún medio electrónico o mecánico: ya sea en su totalidad o en parte.

Gracias por elegirnos

¡Felicitaciones! El equipo que Usted tiene en sus manos cuenta con la más alta tecnología para audio digital. El procesador 542APC es el tope de línea de la serie de procesadores Solidyne. Hemos volcado en este equipo más de 40 años de experiencia en procesadores de audio para radiodifusión.

El 542APC introduce una importante innovación en el campo de los procesadores para FM, pues se trata de un núcleo de procesado de audio (Audio Processing Core) sobre el que corre una aplicación (software) de procesado de audio que determina las características (modelo) del equipo. Se pueden descargar gratuitamente desde el sitio web actualizaciones para un mismo modelo, en forma indefinida. Y puede adquirirse una aplicación más avanzada que expanda las prestaciones del equipo, lo que equivale a tener un nuevo modelo de procesador... pero sin cambiar el hardware.

Todo el control y ajuste del 542APC se hace conectando la unidad a una red local, y usando un navegador web en cualquiera de las terminales del la red. A través de la dirección IP del 542APC se accede a la interfaz de control, que presenta un entorno intuitivo diseñado para operar en pantallas táctiles. El acceso por IP abre la posibilidad de controlar remotamente a un equipo ubicado en planta, si se configura el acceso remoto a la LAN vía Internet.

Otra posibilidad de control, es mediante el controlador remoto 542RM (opcional) que cuenta con una pantalla táctil de 7" que permite comandar al equipo y monitorear parámentros de la transmisión desde los estudios.

Los aspectos esenciales del equipo se pueden manejar desde la mini-pantalla OLED y JOG de control incorparados en el frente del equipo.

542APC incluye un codificador interno RDS para envió de texto a la audiencia. Y codificador estéreo de FM con doble salida MPX.

542APC no es solo un procesador de audio, sino también un instrumento de medición y control; pues incorpora un sintonizador de FM y una etapa de análisis de señal en tiempo real que posibilita monitorear aspectos de la transmisión y del propio procesador (profundidad de modulación, nivel tono piloto, RDS entre otros) y diversos parámetros de la calidad de audio. El sintonizador puede sintonizarse a cualquier frecuencia deseada, que lo habilita a monitorear otras estaciones de radio.

Lea detenidamente este manual para obtener del equipo el máximo rendimiento.

Embalaje y accesorios

Dentro de la caja *Solidyne 542APC* encontrará los siguientes componentes:

- ✓ 1 Procesador Solidyne 542APC
- ✓ 1 Manual de uso
- 1 Cable de alimentación (Interlock con toma de tierra)
- ✓ 1 antena telescópica extensible
- ✓ 1 micro-antena (terminal BNC)
- 1 Certificado de Garantía
- ✓ 4 Topes de goma autoadhesivos

Por favor, revise al recibir que todos estos elementos estén dentro de la caja y que el equipo no haya recibido golpes en el traslado.

Recomendaciones para el montaje

El procesador Solidyne 542APC esta previsto para ser instalado en un rack normalizado de 483 mm (19"). Requiere una unidad de altura libre. También puede ser ubicado sobre una mesa, para lo cual se entregan los topes de goma correspondientes, que se adhieren a la base de la unidad.

Cuando monte el equipo a un rack; utilice siempre tornillos de cabeza plana con arandela flexible (plástico o goma). Tenga la precaución de ajustar primero los tornillos inferiores y luego los superiores, para evitar que el peso de la unidad genere un brazo de palanca sobre los ángulos superiores. No ajuste mucho los tornillos, una leve fuerza al arrimarlos es suficiente. Excesiva fuerza sobre los tornillos puede deformar o incluso quebrar los ángulos del panel.

REFERENCIAS

El cable provisto con el equipo posee conexión a tierra. No lo reemplace ni use adaptadores.

ASEGÚRESE DE CONTAR CON UNA TOMA A TIERRA CONFIABLE.

Glosario

REDES Y CONFIGURACIÓN IP

Dirección IP (IP Address): Identificador único de un dispositivo en una red local o pública. El 542APC puede configurarse con IP fija o automática.

DHCP (Dynamic Host Configuration Protocol): Protocolo que asigna automáticamente una IP a cada equipo conectado a la red.

Máscara de Subred (Subnet Mask): Define el rango de direcciones IP que pertenecen a una red local.

Gateway (Puerta de enlace): Dirección del router o equipo que conecta la red local con Internet.

DNS (Domain Name System): Servicio que traduce nombres de dominio (como solidyne.com) a direcciones IP.

Puerto de red (Network Port): Punto lógico por donde un equipo escucha servicios de red. Ejemplo: el panel web del 542APC usa un puerto para ser accedido vía navegador.

Port Forwarding (Redirección de Puertos): Configuración del router que permite que conexiones externas (desde internet) lleguen a un equipo interno (por ejemplo, acceder al control remoto web del 542APC desde afuera de la emisora).

NAT (Network Address Translation): Sistema que permite que varios dispositivos compartan una misma IP pública, asignando puertos internos distintos.

LAN (Local Area Network): Red privada que conecta computadoras, consolas y servidores dentro de un mismo edificio o sitio.

WAN (Wide Area Network): Red más amplia, como la que interconecta varias estaciones o llega a internet.

Multicast: Modo de envío de datos en red que permite que una sola transmisión llegue a múltiples dispositivos simultáneamente. Usado en AoIP y streaming profesional.

AUDIO SOBRE RED / AoIP

AoIP (Audio over IP): Transporte de audio digital a través de redes Ethernet. Permite reemplazar cables de audio analógico por infraestructura de red.

AES67: Estándar de interoperabilidad que permite que equipos de distintos fabricantes (Dante, Ravenna, Livewire) trabajen juntos sobre AoIP.

DANTE: Protocolo de audio sobre IP desarrollado por Audinate. Es compatible con AES67 (opcional en el 542APC).

LATENCIA: Demora en milisegundos entre la emisión y recepción del audio. En AoIP es importante mantenerla baja para evitar desincronización.

Jitter: Variación de latencia en paquetes de audio digital. Puede causar artefactos si no se maneja adecuadamente.

🖉 STREAMING Y PROTOCOLOS

Streaming: Transmisión continua de audio (o video) a través de una red, sin requerir descarga previa.

RTP (Real-time Transport Protocol): Protocolo utilizado para enviar audio en tiempo real. En 542APC se usa para enlaces STL.

RTSP (Real-Time Streaming Protocol): Protocolo de control usado en sistemas más complejos de streaming (no es requerido en 542APC).

Icecast: Servidor de streaming que permite distribuir señal de audio a múltiples oyentes por internet, usando MP3 o AAC.

Shoutcast: Sistema de streaming similar a lcecast, ampliamente usado en estaciones web.

MP3: Formato de compresión con pérdida. Muy usado en streaming por su bajo consumo de ancho de banda.

AAC: Formato de audio más eficiente que MP3, usado en transmisiones de mayor calidad.

Bitrate: Tasa de datos del audio transmitido (kbps). Cuanto más alta, mejor calidad pero mayor consumo de red.

Buffer de streaming: Memoria temporal usada para almacenar unos segundos de audio antes de reproducirlo, compensando pequeñas interrupciones de red.

Servidor de Streaming: Sistema que recibe audio desde el codificador (como el 542APC) y lo redistribuye a los oyentes (lcecast, Wowza, etc.).

Receptor de streaming: Dispositivo o software que recibe la señal enviada por el 542APC y la convierte en audio nuevamente.

🖡 SEGURIDAD Y ACCESO REMOTO

Firewall: Sistema que controla qué conexiones están permitidas hacia/desde un equipo. Debe configurarse para permitir el acceso remoto al 542APC.

HTTPS: Versión segura del protocolo HTTP. Protege las comunicaciones con la interfaz web si se implementa con certificados SSL.

VPN (Virtual Private Network): Método para acceder de forma segura a una red remota como si estuvieras conectado localmente. Ideal para controlar el 542APC desde otra ciudad.

Autenticación: Proceso de verificación de identidad mediante contraseña o token. El 542APC permite establecer clave de acceso.

Firmware: Software interno que controla el hardware del equipo. Puede actualizarse para obtener mejoras o correcciones.

Sección 1

Guía rápida de instalación

ALIMENTACIÓN Y ENCENDIDO

Antes de enchufar, verifique en el panel trasero la posición de la llave SELECTORA DE TENSIÓN DE RED 200/240V o 100/130V, según corresponda.

Utilize el cable Interlok de tres clavijas suministrado y asegúrese de contar con una **puesta a tierra** apropiada. La unidad posee una llave de encendido.

CONTROL

SOLIDYNE 542 IP: 192.168.0.80 MAC: D8:80:39:32:FD41 PRINT 95 FIXTENDEDEASS

CONEXIÓN ETHERNET

confirmar un valor o acceder a una opción.

Todas las funciones y ajustes del 542APC se manejan desde una interfaz gráfica WEB a la que se accede conectando el equipo a una red local. Use un cable UTP estándar para conectar el puerto ETHERNET del 542 ACP al router de la LAN. De fábrica el equipo viene en modo DHCP. El router le asignará una dirección IP, que muestra la pantalla de inicio del procesador.

Algunas funciones básicas se pueden configurar desde el frente del equipo, usando la rueda de comando. Su uso es intuitivo: Gire la rueda para elegir opciones y cambiar valores. Oprima la rueda para

CONTROL WEB

Usando una computadora de la red, ingrese la dirección IP del 542APC en un navegador WEB. El navegador mostrará las pantallas de Control WEB. La pantalla inicial es una pantalla de Estado. Para cambiar opciones del equipo, pulsar el botón **ADJUST MODE** ubicado arriba a la derecha.

ENTRADAS

CONEXIÓN

La entrada activa predeterminada es analógica balanceada con conexión XLR. Hay una segunda entrada analógica sobre **RJ45** (compatible con StudioHub(c)) y entradas digitales AES3 y AoIP (opcional). Para usar otras entradas proceda como se explica a continuación.

AJUSTE

Las entradas analógicas están ajustadas para trabajar a -18 dBfs con nivel nominal de +4dBu. Asegúrese que en uso normal de la consola de aire (0 VU), los picos en el indicador del 542APC estén entre -22 y -9 dBfs.

Si fuera necesario ajustar el nivel de entrada, puede hacerse <u>desde el frene del equipo</u> como se indica a continuación.

SELECCIÓN DE LA ENTRADA (desde panel frontal)

- ✓ Gire la rueda de comando hasta visualizar la pantalla INPUT (vumetros).
- ✔ Pulse la rueda de control para acceder a la configuración de "entrada activa".
- ✔ Gire la rueda para elegir la entrada (se muestra numero y nombre de la entrada ej: "2:ANALOG2").
- ✔ Pulse la rueda para confirmar la selección.
- ✓ La entrada activa seleccionada quedará indicada en la pantalla de vumetros de entrada (INPUT) por una flecha.

CAMBIO DE GANANCIA DE ENTRADA (desde panel frontal)

- ✔ Gire la rueda hasta visualizar pantalla "enter SETUP MENU" y pulse la rueda para ingresar al mismo
- Gire la rueda para seleccionar "IN" y pulse la rueda para ingresar al SETUP de entradas
- ✓ Pulse la rueda para seleccionar"INPUT SEL". Gire la rueda para seleccionar la entrada deseada y luego pulse para confirmar.
- Seleccione "GAIN" girando la rueda y pulse para activar el cambio de ganancia.
- Gire la rueda en sentido horario para aumentar la ganancia y en sentido contrario para disminuirla.
- Ajuste la ganancia para que los vumetros muestren un valor pico entre -22 y -9 dBFS Pulse la rueda para confirmar la ganancia.
- Puise la rueda para confirmar la ganancia.
 Oine la mueda para coloniarianan DAOK y calin de coloniaria.
- Gire la rueda para seleccionar BACK y salir de este menú.
 Gire la rueda bacta el ultimo icono "BACK" para salir del menu SETUR I
 - Gire la rueda hasta el ultimo icono "BACK" para salir del menu SETUP. Los cambios serán salvado automáticamente.

SALIDAS

MPX

El generador estéreo tiene **doble salida MPX** con ajuste de nivel independiente. Conecte una salida MPX al transmisor usando cable coaxial de 50 o 75 Ohms.

AUDIO

Hay dos **salidas de audio estéreo** analógicas balanceadas: sobre **XLR** y sobre **RJ45**. Ambas salidas pueden entregar audio con pre-énfasis a 50/75uS o audio de-enfatizado (para WEB-casting o enlace con repetidoras). Para activar el de-enfasis en las salidas de audio se debe acceder al control web.

NIVEL DE MODULACIÓN

Para el ajuste de nivel de modulación, 542APC cuenta con:

- sintonizador interno
- medidor de modulación
- generador de tonos de calibración.

ANTENA DE RECEPCIÓN

La transmisión de la propia emisora (o de cualquier otra) se puede sintonizar en el 542, para monitorear en tiempo real el nivel de modulación, entre otras mediciones.

Conecte la antena telescópica suministrada con el equipo al conector **FM ANT** (BNC) del panel trasero. De fábrica se incluyen dos antenas receptoras: una antena telescópica y una micro-antena fija. Usualmente la antena telescópica es adecuada para recepción en planta transmisora. Para más detalles sobre recepción y antenas consultar 2.4 - Antena receptora de FM.

TONO DE CALIBRACIÓN

Utilizando una computadora conectada a la misma red que el 542 APC, ingrese en el navegador (preferentemente Google Chrome) la **IP del equipo** indicada en la pantalla OLED. Aparecerán las pantallas de control WEB.

	SONIDO
700 800 2 94 96 98	La radio ya está al aire con el sonido del Solidyne 542APC. Ahora puede escuchar los diferentes PRESETS de fábrica para fijar el sonido que se ajuste a las necesidades de la emisora. Sintonice en un buen equipo de audio (o use buenos auriculares). También puede escuchar la transmisión usando el sintonizador interno del 542APC. Proceda como se describe a continuación.
	 Desde el panel frontal, gire la rueda de mando hasta visualizar la pantalla PROCESS. El ajuste actual se muestra en la línea inferior de la pantalla. Pulse la rueda de control para cambiar el ajuste actual. Gire la rueda para elegir un ajuste, y pulse nuevamente para confirmar. El sonido en el aire cambiará gradualmente hacia el nuevo ajuste. Desde la interfaz de Control WEB, los ajustes se pueden cambiar desde la sección PRESETS ubicada en el área fija de visualización.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	562 APC tiene 16 ajustes pre-establecidos en fábrica, que no pueden modificarse. El usuario dispo- ne de 16 memorias de usuario para crear sus propios ajustes, partiendo de los ajustes de fábrica. Esto se hace desde las pantallas de Control WEB. SOUND WIZARD Los controles WIZARD permiten cambiar las características básicas de cualquier preset, con tan solo 4 controles:
	 Bright (brillo) Bass (bajos) Compression/Density (densidad) Loudness (Intensidad) También se pueden activar/desactivar y cambiar el grado de acción de las etapas ENHANCERS: EQ paramétrico Bass enhancer Stereo enhancer
	Asistencia Técnica Remota
Permitir el control remoto Espere hasta que su asociado se conecte a la sesión. Código de sesión s23-429-648 Su nombre LABO-D-02 Descripción	 Una vez que el equipo está instalado, si es necesario, el equipo ATR (Asistencia Técnica Remota) desde fábrica pueden acceder para realizar ajustes y mediciones finales. Para esto, se deben seguir los siguientes pasos: El procesador 542APC debe estar conectado a la LAN a través del puerto Ethernet de control (ver a continuación ref.11 en Figura 1). El procesador debe contar con la antena de recepción correctamente instalada. Para más detalles sobre recepción y antenas consultar 2.4 - Antena receptora de FM. Usando una computadora conectada a la misma LAN, verifique el acceso al procesador ingresando en un navegador web la dirección IP indicada en el frente del equipo. En la misma computadora, descargar el software TeamViewer QuickSupport del siguiente enlace: https://get.teamviewer.com/solidynequick Ejecutar el archivo descargado TeamViewerQS.exe. La computadora se conectará con el equipo de Asistencia Técnica Remota, que podrá tomar el control del equipo en forma directa. Se muestra en pantalla la ventana "Permitir el control remoto", que incluye un chat con el equipo de Soporte.
Cancelar www.teamviewer.com Listo para conectar (conexión segura)	 Para coordinar la asistencia remota contactarse a: <u>soporte@solidyne.ar</u> Whatsapp +54 9 11 3119-3254

Sección 2

Instalación y conexiones

2.1 Instalación

- El equipo pude montarse en un rack estándar de 19" o sobre una mesa. En este último caso conviene colocar en la base los topes de goma suministrados de fábrica.
- No colocar la unidad sobre una superficie o estante inestable; el aparato podría caerse, causando daños a alguna persona y dañarse la unidad.
- La temperatura ambiente deberá estar entre 5°C y 40°C. Deberá evitarse la incidencia directa de rayos solares sobre el procesador o la proximidad de fuentes de calor.
- El 542APC tiene protección interna contra campos de RF, lo cual permite su montaje próximo a transmisores.
- Evitar la presencia de campos electromagnéticos fuertes (transformadores, motores, etc).

2.1.1 Alimentación

200/240V - **100/130V Verifique** que la **llave selectora de voltaje** se encuentre en la posición que corresponda.

El equipo se enciende desde un **interruptor principal** (ver **3** en figura 1).

El **suministro de tensión** debe mantenerse dentro de un margen de variación menor al 10%. De lo contrario, usar estabilizadores de tensión de acción rápida (ferroresonancia o electrónicos). La unidad cuenta con un fusible general de 1A (ver **4**).

El cable de alimentación no debe mezclarse con cables de audio, especialmente con aquellos que transportan audio analógico.

No utilizar adaptadores que anulen la clavija de conexión a tierra del cable Interlock (ver $\fbox{2}$). Todo sistema de audio debe contar con una **toma a tierra** adecuada.

Se recomienda seguir las normas vigentes (Artículo 810 del Código de Electricidad Nacional (NEC) −USA-; ANSI/NFPA № 70-1984; en Argentina IRAM 2379 y 2281-3) que proporcionan información para una conexión a tierra adecuada.

2.2 Panel trasero y conexiones de audio

2.2.1 Conexiones de audio analógicas

2.2.1.1 Entradas y salidas sobre XLR

542APC tiene entradas **5** y salidas estéreo **9** analógicas balanceadas sobre conectores XLR. Las entradas son balanceadas sin transformador. Las conexiones analógicas balanceadas sobre **XLR** se conectan como es estándar:

Conexión de entradas balanceadas XLR 1 = Masa 2 = Vivo balanceado fase positiva (+) 3 = Vivo balanceado fase negativa (-) Conexión XLR desbalanceada Entradas: Terminal vivo = 2 Terminal de masa = Unión de 1 y 3 Salidas: Vivo a pin 2; <u>dejar pin-3 sin conexión</u>. Masa = pin 1 ATENCIÓN

Mantener la fase en la conexión balanceada.

Usar cable de dos conductores bajo malla, preferentemente con doble malla de blindaje. Mantener la longitud de los cables menor a 30 metros, aunque en casos especiales se puede llegar a los 100 metros aceptando una reducida pérdida en la respuesta de altas frecuencias.

2.2.1.2 Entradas y salidas sobre RJ45

Con el advenimiento del audio sobre IP (AoIP) diversos fabricantes comenzamos a utilizar conectores RJ45 y cable multipar blindado para unificar el cableado de los distintos conectores de audio analógico.

Un conector RJ45 contiene dos líneas balanceadas, lo que reduce el tamaño del equipo y la cantidad de conectores.

El uso de cable estructurado para la conexión entre equipos distantes facilita la instalación por la disponibilidad de componentes y herramientas usadas en redes de datos; evitando soldaduras.

En el extremo del cable multipar la conexión al dispositivo de audio muchas veces seguirá requiriendo conectores de audio estándar. Para eso Solidyne provee tramos de adaptación *RJ*-45 hembra al conector de audio balanceado que sea necesario (consultar en solidyne.ar).

Si bien no hay un estándar definido para usar RJ45 con señales de audio, los dispositivos Solidyne son compatibles con los accesorios de la marca StudioHub(c) (EE.UU.) ampliamente usados en radio (www.studiohub.com).

Las entradas balanceadas 6 y las salidas (no balanceadas) 10 sobre RJ45 se conectan usando cable multipar blindado (STP) CAT5. Las tablas muestra las señales en el conector RJ45:

PIN	COLOR DE CABLE
1 2 3 4 5 6 7 8	Naranja / Blanco Naranja Verde / Blanco Azul Azul / Blanco Verd Marrón / Blanco Marrón

Tabla 1 - nomenclatura RJ45

ENTRADA BALANCEADA RJ45		
PIN COLOR DE CABLE		
 Canal izquierdo (+) Canal izquierdo (-) Canal derecho (+) Tierra Reservado Canal derecho (-) -15 (opcionalmente) +15 (opcionalmente) 	Naranja / Blanco Naranja Verde / Blanco Azul Azul / Blanco Verde Marrón / Blanco Marrón	

Tabla 2 - E/S balanceadas RJ45

SALIDA NO BALANCEADA RJ45		
PIN	COLOR DE CABLE	
 Canal izquierdo (+) Tierra Canal derecho (+) Tierra Reservado Tierra Topcionalmente) +15 (opcionalmente) 	Naranja / Blanco Naranja Verde / Blanco Azul Azul / Blanco Verde Marrón / Blanco Marrón	

Tabla 3 - E/S balanceadas RJ45

2.2.2 Conexiones de audio digital

2.2.2.1 Entrada/salida AES-3

El equipo incluye entrada y salida **AES-3**. Cuando se use la entrada digital, conviene conectar también las entradas analógicas. En caso de perderse la señal en alguna de las entradas, el procesador conmuta automáticamente a la entrada que presente señal. La entrada predeterminada se selecciona desde el menú INPUT, como se explica más adelante.

La salida AES3 es balanceada, con conector es tipo XLR macho. Entrada y salida se conectan:

XLR	Señal
1	GND
2	AES3 (1)
3	AES3 (2)

Tabla 4 - Conexión estándar AES-3

2.2.2.2 Puerto para streaming entrante (opcional)

El puerto Ethernet AoIP **11** permite recibir un streaming entrante, utilizado para el transporte de audio Estudio – Planta. Se soportan streamings directos (RTP) y streamings desde servidores Shoutcast/Icecast.

En el Estudio, el envío de *streaming RTP* puede generarse usando consolas de aire Solidyne DX816, consolas Serie 2600, serie UNIDEX o cualquier equipo de terceros que codifique en formatos compatibles.

Para detalles de configuración: SECCIÓN 5 – Equipos con servicios AoIP

2.3 Salidas MPX

542APC cuenta con **doble salida MPX 12**, con ajuste de nivel independiente. La doble salida permite conectar un segundo transmisor que opere como respaldo o para uso nocturno.

Los conectores MPX son BNC. Se puede emplear cable coaxial de 75 Ohms (RG-59). La longitud de este cable deberá mantenerse por debajo de los **25 metros**.

Cuando ingrese al transmisor con señal MPX, asegúrese de que la **red de pre-énfasis interna del transmisor** esté **deshabilitada** (respuesta plana 20 - 100 Khz). El pre-énfasis es fijado en el 542APC en 50 o 75 microsegundos.

Es importante mantener una distribución de tierras adecuada. En caso de duda, consultar a Solidyne describiendo el equipo y la distribución de tierras empleada.

2.4 Antena receptora de FM

El receptor interno permite sintonizar la transmisión de cualquier emisora y visualizar el nivel de modulación, niveles de audio, información RDS entre otros aspectos de la transmisión.

Ver operación del receptor y mediciones en: 3.9 – Monitor-analizador de FM

Receiver FM ant **R** es un conector de tipo BNC para conexión de una antena de recepción. De fábrica se suministran dos antenas:

- Mini-antena telescópica extensible. Es adecuada para la mayoría de las instalaciones.
- Micro-antena BNC: Cuando la intensidad de campo de RF es muy elevada, la ganancia de la antena telescópica puede ocasionar la saturación del sintonizador, invalidando las mediciones (el indicador RF LVL del FM Monitor Analyzer "se clava" en 100 dBuV). En ese caso se debe usar el terminal-antena BNC.

Dependiendo de las condiciones de la instalación (ubicación del equipo, distancia a la planta transmisora, etc.) puede ser conveniente usar una antena de FM externa instalada en el exterior del edificio (no suministrada con el equipo).

2.5 Puerto para control vía web

El puerto **ETHERNET 11** (ver Fig.1, panel trasero) permite conectar el equipo a una LAN utilizando un cable UTP estándar. Esto brinda acceso a la interfaz de control WEB que es generada internamente por el procesador.

De fábrica el equipo viene en modo DHCP. El router de la LAN le asignará una dirección IP que se muestra en la pantalla del equipo. Esta IP permite acceder a la interfaz usando un navegador web en una computadora de la LAN.

Para configuración y detalles del acceso web: 3.3 – Acceso y control vía web

2.6 GPI0

Solidyne 542APC posee una entrada y una salida de propósito general (GPIO) disponibles sobre un conector tipo DB9 (ver Figura-1 14). Las señales en el conector son:

J9	PIN	SEÑAL
o d GPI-COM	1	GPI - VOLTAJE
	2	GPI - COMÚN
6 4 GPO-OC	3	NO CONECTADO
← 0 9 0 5 +12V-OUT	4	GPO - COLECTOR ABIERTO
	5	12 VCC / 100 mA MAX
	6 a 9	CHASIS

2.6.1 Conexión y usos de la GPI

La **entrada de propósito general** (GPI) permite conmutar el ajuste de procesado hacia un **ajuste optimizado para voces** cuando los micrófonos son activados al aire.

GPI se activa aplicando una tensión entre 5 y 15 voltios sobre el PIN-1. No usa referencia de tierra interna. El PIN-2 se conecta como GPI-COM a la señal externa. Esto evita lazos de realimentación que pueden producir ruido.

GPI no tiene polaridad, la activación se produce con tensiones positivas o negativas dentro del rango de trabajo.

Cuando la tensión en GPI es cero, se retorna al preset de procesado principal. La conmutación de los presets de procesado se indica en la pantalla OLED del equipo.

Cuando Solidyne 542APC se instala en los estudios, el disparo de la GPI se puede resolver conectando la salida de tensión de la luz de aire directamente a la GPI del 542APC.

Verificar que la tensión "tally light" que entrega la consola se encuentre dentro del rango soportado (5-15 VCC).

Cuando Solidyne 542APC está en planta transmisora, el disparo de la GPI puede resolverse utilizando un contacto a distancia (relay) del enlace Estudio-Planta si el equipo utilizado lo provee.

2.6.2 Conexión y usos de la GPO

La **salida de propósito general** (GPO) permite comandar un dispositivo externo ante una determinada condición del procesador.

Se conecta sobre el **PIN 4** del DB9. Es un contacto tipo "Colector Abierto" normal-abierto, que se cierra (se conecta a tierra de chasis) cuando está activo. Soporta **100 mA** máximo.

Las condiciones que activan la GPO se establecen desde la pantalla de Control WEB, en la opción de menú CONFIGURACIÓN.

Para ver opciones de disparo GPO: 3.11 - Ajustes de sistema

2.7 Actualizaciones y modelo

Las sucesivas actualizaciones de un mismo modelo de software pueden:

- Optimizar los procesos
- Agregar nuevos procesos y funciones.
- ✓ Mejorar o modificar la interfaz gráfica del usuario.
- Agregar nuevos ajustes de procesado (presets)

La versión y modelo se muestran en la pantalla de inicio del panel frontal del equipo, y en la línea superior de la pantalla Control WEB.

El equipo se puede actualizar estando en servicio. Puede ocasionar una **breve interrupción de audio** al aire (menor a 2 segundos).

2.7.1 Procedimiento (update)

VERSIONES ANTERIORES A 2.0

Para equipos con versión de **firmware 1.35 o anterior**, consultar el manual correspondiente en <u>www.solidyne.ar</u> (Manuales de Usuario sección equipos discontinuados)

Para **actualizar la versión del firmware** proceda como se indica a continuación:

- La computadora con la cual se accede al procesador debe contar con acceso a Internet. La computadora debe estar conectada a la misma LAN que el 542APC.
- Acceder a la página de control WEB. Ingresando la dirección IP de CONTROL correspondiente en un navegador.

Para conocer cómo acceder a la interfaz web: 3.3 – Acceso y control vía red Ingresar al modo SETUP (arriba a la derecha en la página principal) para habilitar el menú de opciones. Elegir en el menú la opción INFO.

4. En esta pantalla el equipo automáticamente verifica si hay disponible una actualización del software y lo notifica (ver imagen a continuación). Si hay una actualización disponible, se genera un enlace para su descarga directa.

- 5. **Descargar** la actualización de firmware desde el enlace obtenido.
- La actualización requiere correr una aplicación de Windows: "Solidyne Discovery & Update". Descargarla usando el enlace que se muestra en el ítem SOFTWARE.
- Extraer el archivo e instalar la aplicación. El instalador creará una carpeta "Solidyne Audio Processor" en el menú Inicio de Windows. Opcionalmente se puede crear un acceso directo en el Escritorio.
- 8. Ejecutar la aplicación "Discovery & Update".

Solidyne Discov	ery & Update			e 0 (
Solidyn	e Discover	y & Update	3	Acerca de Solidyne
Discover	Su dirección IP es: 192. 1	168.0.109		Actualizar firmware
IP	Host name	MAC Address	Extra Info	
192.168.0.80 192.168.0.86	542APC UX24-SALON	D8-80-39-32-FD-3A 04-91-62-15-B2-F6	Devid:542-APP:58ANDFM_AB-App Devid:UX24-APP:UX24_AB-AppVer:	/er:2.0 .FW :1.10 .F Wve

Figura 2: Herramienta para actualización del Firmware

- 9. Pulsar el botón "Discover...". Aparecerá un listado con los equipos Solidyne conectados a la red.
- 10. Seleccionar el equipo 542APC en la lista y pulse el botón "Actualizar firmware".
- En la ventana emergente, localizar el archivo de actualización de firmware descargado y pulsar "Aceptar". Comenzará a sobre-escribirse la programación interna del 542APC.
- El procesador permanecerá operativo en el aire durante la actualización. Habrá una breve interrupción cuando el equipo se reinicie (menor a 2 segundos).

¡ATENCIÓN!

NO APAGUE NI DESCONECTE EL EQUIPO DE LA RED. PODRÍA PRODUCIR DAÑOS NO REPARABLES POR EL USUARIO.

EVITAR REALIZAR ACTUALIZACIONES DESDE COMPUTADORAS CONECTAS A LA RED VÍA WI-FI.

ACTUALIZACIONES REMOTAS

NO REALIZAR ACTUALIZACIONES REMOTAS SI EL EQUIPO ES ACCEDIDO DIRECTAMENTE VÍA NTERNET (PORT FORWARDING). USAR UN SOFTWARE DE ESCRITORIO REMOTO PARA ACCEDER A UNA COMPUTADORA CONECTADA A LA LAN DEL PROCESADOR Y ACCEDER LUEGO AL CONTROL WEB LOCAL DEL EQUIPO.

ACTUALIZACIÓN CON UN CLICK

LA EXPANSIÓN STREAMER AoIP, PERMITE ACCEDER DIRECTAMENTE AL EQUIPO A TRAVÉS DE UN ENLACE Y AGREGA UN MÉTODO DE ACTUALIZACIÓN SIMPLIFICADO.

Ver detalles en 5.2.10 - Actualizaciones simplificadas

Sección 3

Acceso y configuraciones

3.1 Generalidades

La configuraciones esenciales se pueden hacer desde el frente del equipo, sin necesidad de una computadora externa.

Los ajustes y configuraciones avanzadas requieren acceder a las páginas de control WEB.

3.1.1 Ajustes de audio y de sistema

Los **AJUSTES DE PROCESADO** o "presets" almacenan la configuración de las etapas de PROCESADO DE AUDIO, que definen el sonido de la emisora.

El 542APC tiene **16 presets de fábrica** y 16 de usuario. Los presets de fábrica (01 al 15) no se pueden modificar.

Los **presets del usuario** se pueden crear a partir de los presets de fábrica, copiándolos para luego modificarlos usando los **controles simplificados "Wizard**", o los controles avanzados de cada etapa.

Los AJUSTES DEL SISTEMA son aquellas configuraciones del equipo que no se relacionan con el procesado de audio, como niveles de entrada, nivel MPX, RDS, etc. NO no se almacenan en los presets, pues son globales e independientes del ajuste de procesado activo.

3.1.2 Contraseña

Desde Panel de Control WEB, que se accede vía IP, se puede establecer una contraseña de hasta 8 caracteres para impedir que personas no autorizadas realicen modificaciones en la configuración avanzada o en los ajustes de sonido.

De fábrica la contraseña está deshabilitada. Si se habilita, la contraseña predeterminada será 1234.

Cómo habilitar y cambiar la contraseña: 3.11 - Ajustes de sistema

3.1.3 Formas de acceso

El 542APC se puede controlar de varias maneras:

- Sus aspectos esenciales se pueden definir directamente desde el **frente del equipo**.
- Conectando el equipo a una red local a través del puerto Ethernet se tiene total acceso a las páginas de control web, ingresando la dirección IP del equipo en cualquier navegador WEB de una computadora de la LAN.
- Lite Commander: Es una aplicación que corre en un computador y permite cambiar remotamente (via red) el preset de sonido y el modo de transmisión (mono/estéreo). El control se puede programar según un esquema horario (ver "3.13 Lite Commander").

3.2 Comando desde el rack

El frente de la unidad presenta una **pantalla OLED** y una **rueda de comando** con pulsador.

- 1. Girando el control se navegan las opciones.
- 2. Pulsando la rueda se accede a las opciones de una pantalla. Girando nuevamente se navegan las opciones dentro de esa pantalla.
- 3. Para modificar una opción, se pulsa la rueda de comando sobre la opción para elegirla, y se gira para cambiar su valor o estado.
- 4. El cambio se confirma pulsando nuevamente la rueda de comando.
- 5. Girar nuevamente para seleccionar otra opción; o pulsar sobre "BACK" para volver a la navegación de las pantallas.

3.2.1 Pantalla inicial y presets

Al encender el 542APC aparecerá por unos segundos la pantalla de inicio indicando la *versión de firmware*. Luego, mostrará la dirección IP actual, la MAC y el **preset de procesado** actual.

Figura 3: Pantalla inicial

- 1. Pulsando la rueda se accede a cambiar el procesado de audio actual.
- 2. Girando la rueda se pueden navegar los 32 presets (16 de fábrica y 16 del usuario)
- 3. Para confirmar un preset, pulsar la rueda.

3.2.1.1 Pantalla de bloqueo

La pantalla de bloqueo (LOCK) se muestra girando la rueda sobre la pantalla inicial. Permite activar/desactivar el acceso por contraseña.

Figura 4: Pantalla de bloqueo

Cuando el equipo está bloqueado, se pueden navegar las pantallas pero no se pueden acceder a las opciones.

✓ Para bloquear el equipo girar la rueda para visualizar la pantalla LOCK.

- Pulsar para activar el bloqueo de pantalla. Si el acceso con contraseña está activo, la misma será necesaria para desbloquear el acceso.
- Para desbloquear el equipo pulsar nuevamente sobre la pantalla LOCK, se solicitará la contraseña (predeterminada: 1234).

3.2.2 ENTRADAS (INPUTS)

La pantalla INPUT muestra el nivel de señal presente en cada una de las entradas. La **entrada activa** se indica con una FLECHA junto al número. La entrada predeterminada de fábrica es la analógica XLR.

Figura 5: Niveles de entradas

3.2.2.1 Selección de entrada (desde panel frontal)

- 1. Gire la rueda hasta visualizar la pantalla INPUT.
- 2. Pulse la rueda para cambiar la entrada activa.
- 3. Gire la rueda para elegir una entrada (a la derecha se muestra numero y nombre de la entrada, por ejemplo, "2:ANALOG2").
- 4. Pulse la rueda para confirmar. La entrada activa queda indicada por una flecha junto al número.
- 5. El ajuste de la ganancia se explica más adelante, en la pantalla de CONFIGURACIÓN.

3.2.3 MONITOR DE SALIDAS (OUTPUTS)

Figura 6: Salidas

Esta pantalla muestra el nivel de señal en todas las salidas del procesador. Desde el frente del equipo, el ajuste de niveles de salidas se accede desde el menú SETUP. El procedimiento es similar al detallado para las entradas.

3.2.4 MONITOR DE PROCESADO

Muestra la acción de los AGC de banda completa y multibanda; compresión y limitación multibanda, limitador de banda ancha el recortador final.

El ajuste de los procesos de audio solo pueden ser editados desde las pantallas de control web.

3.2.5 AURICULARES (headphones)

Figura 8: Nivel auriculares

Ajusta el nivel de auriculares. Una vez que se accede a esta pantalla, girando la rueda el nivel cambia de manera directa.

También permite elegir la fuente de señal entre:

a) Entradas de audio analógicas y digitales

- b) Sintonizador de FM interno
- c) Salida del AGC
- d) Audio final procesado (con de-enfasis).
- Para cambiar la fuente de señal, pulsar la rueda y girar para navegar las opciones. Pulsar nuevamente para confirmar.
- Para abandonar la pantalla HEADPHONES, pulsar y mantener presionada la rueda hasta que aparezca un menú de opciones.

3.2.6 CONFIGURACIÓN DE SISTEMA

Desde la pantalla frontal se pueden editar las opciones de configuración principales del equipo.

Editar la configuración desde la interfaz web: 3.3 – Acceso y control vía red

1. Girar la rueda hasta visualizar SETUP MENU.

Ilustración 9 - Acceso a las opciones de configuración

2. Pulsar la rueda. Aparecerá la pantalla de opciones de configuración:

Figura 10: Configuración

3.2.6.1 Configuración de la ENTRADA

Figura 11

Girando la rueda se accede a las opciones.

INPUT SEL permite elegir la entrada activa.

GAIN ajusta la ganancia de la entrada activa en un rango de +/-14 dB. El nivel

+4dBu para las entradas analógicas esta referido a -18 dBfs (AES K18). Esto implica 18dB de margen de sobrecarga (headroom). La ganancia de entrada se ajusta para que los picos a 0VU en la consola oscilen entre -22 y -9 dBfs en el indicador de nivel de entrada del procesador.

- 1. Girar la rueda para seleccionar la opción "IN" y pulsar para ingresar.
- 2. Omitir este paso si no es necesario cambiar la entrada actual. Para cambiar la entrada, girar la rueda para seleccionar "INPUT SEL" y pulsar. Girar hasta visualizar la entrada deseada y luego pulsar para confirmar.
- 3. Girar para seleccionar "GAIN" y pulsar para habilitar el cambio de ganancia.
- Girar la rueda en sentido horario para aumentar la ganancia y en sentido contrario para disminuirla. Ajustar la ganancia para que los indicadores muestren un valor pico entre -22 y -9 dBFS.
- 5. Pulsar para confirmar la ganancia.
- 6. Girar para seleccionar BACK y pulsar para salir.
- 7. Para abandonar el menu SETUP girar la rueda hasta el icono "BACK".
- 8. Los cambios se guardan automáticamente al salir.

3.2.6.2 Configuración de las SALIDAS

Nivel de las salidas de audio.

OUTPUT ADJ permite elegir una salida para modificar su nivel.

GAIN ajusta el nivel para la salida seleccionada.

Figura 12: Nivel de las salidas

3.2.6.3 STEREO GENERATOR

Permite ajustar el nivel de modulación de la sub-portadora piloto ST; modulación de la sub-portadora RDS y niveles para MPX-1 y MPX-2 (volts pico a pico).

Figura 13: Codificador estéreo

3.2.6.4 RECEPTOR DE FM

Permite ingresar el tipo de banda de FM y la frecuencia a sintonizar.

Figura 14: Modo de FM

3.2.6.5 ETHERNET

Configuración del puerto Ethernet para control remoto. Conectar el equipo a una LAN permite acceder vía IP a las páginas de configuración WEB. De fábrica el equipo viene en modo DHCP. La dirección IP asig-

nada se muestra en la pantalla de inicio.

3.2.7 MONITOR DE FM

El equipo cuenta con un sintonzador de FM interno, que permite analizar diversos aspectos de la transmisión de la emisora sintonizada. El frente del equipo muestra tres pantallas con parámetros de la transmisión: FM MONITOR, FM MODULATION MONITOR y RDS ANALYZER.

Figura 16: Pantallas del receptor FM

3.3 Acceso y control vía red

3.3.1 Acceso desde la red local

Todas las opciones de configuración y ajustes de procesado 542 APC son accesibles desde las páginas de control WEB. Para acceder es necesario:

1. **Conectar el equipo a una boca del** *router/switch* de la red local, usando el puerto Ethernet Control.

NO CONFUNDIR EL PUERTO ETHERNET DE CONTROL CON EL PUERTO ETHERNET AOIP (equipos con STREAMER /AOIP).

2. La IP asignada se muestra en la pantalla OLED del frente del equipo.

De forma predeterminada 542APC trabaja con dirección IP dinámica (DHCP activado) El router le asignará una dirección IP libre. En esta configuración, la dirección IP asignada puede cambiar cuando el equipo se reinicia. Se puede asignar una dirección IP estática desde la pantalla de ajustes de sistema.

SOLIDYNE MULTI-DISCOVERY

Si no tiene el equipo a la vista; puede conocer la IP corriendo en la computadora la aplicación **"Solidyne Multi-Discovery"**, que se descarga desde el siguiente enlace:

https://www.solidynepro.com/DW/IP.exe.

🚔 Solidyne Multi	Discovery			○
	Solidyn	e Multi	Discovery	Acerca de Solidyne
Protocolo		ón IP es:	Network interface:	
Solidyne	▼ 192.168.0).121	192.168.0.121 👻	Discover
IP	Host name	MAC Address	Extra Info	
192.168.0.103 192.168.0.124 192.168.0.92	UX18 542APC Discovery	60-8A-10-74-C1-E3 40-84-32-16-73-E3	Devid:UX18-APP:UX18_AA-Aj Devid:542-APP:58ANDFM_AD	opVer:1.01-FWver:J -AppVer:2.11-FWve

- 3. En el menú **Protocolo** de **Multi-Discovery** elegir "Solidyne" y pulsar **Discover** para encontrar el equipo.
- 4. Haciendo doble clic sobre el ítem se abrirá la interfaz de Control WEB directamente en el navegador predeterminado.
- También se puede ingresar manualmente la dirección IP en un navegador web (recomendado Google Chrome) usando una computadora conectada a la misma LAN que el 542APC.

REDES WI-FI

Se recomienda que la computadora esté conectada por cable a la LAN, dado que si está conectada por Wi-Fi, puede ocurrir, dependiendo de la configuración de la red, que la computadora Wi-Fi no tenga permisos para acceder a dispositivos conectados a la red por cable.

3.3.2 Acceso remoto vía Internet

En unidades equipadas con la expansión *STREAMER AoIP* (equipos con número serie AD y posteriores) el **acceso** al procesador vía Internet está simplificado a través de un servicio que genera un <mark>enlace fijo</mark>.

Acceso remoto simplificado: SECCIÓN 5 – Equipos con servicios AoIP

Si el equipo no cuenta con el servicio simplificado, se puede acceder desde fuera de la LAN de dos maneras:

Usando un sorftware de Escritorio Remoto

Un método sencillo, que no requiere mayores configuraciones, es usar un software de escritorio remoto (Team-Viewer, Anydesk, Parsec, etc.) para acceder remotamente a una computadora de la LAN conectada por Ethernet al procesador. Desde esa computadora se corre un navegador web y se accede a la interfaz web del 542APC.

De este modo es posible configurar remotamente al procesador, e incluso instalar actualizaciones de firmware sin riesgos, porque la comunicación entre la computadora remota y el procesador 542APC tiene lugar dentro de la red local. Internet solo interviene en el control de la computadora remota.

Configurar acceso externo a la IP de equipo

La segunda opción consiste en instalar el procesador con una dirección IP estática, y configurar la red local para permitir acceso externo a esa dirección IP. Esto requiere configuraciones avanzadas de re-direccionamiento de puertos; contratar IP públicas estáticas y/o emplear servicios de servidores DNS. El detalle de estas configuraciones excede a este manual. Consultar a un técnico calificado en administración de redes.

3.4 Interfaz de Control WEB

3.4.1 Pantallas de Estado

Al acceder vía red al procesador, la interfaz de control web presenta **pantallas de estado** que **muestran la ac**ción y estado actual de las distintas etapas del equipo.

Las pantallas de estado no permiten modificar configuraciones ni cambiar el procesado. Para poder cambiar parámetros, el usuario debe cambiar al modo de edición pulsando el botón **SETUP** en el ángulo superior derecho de la ventana (ver más adelante).

Las pantallas de estado se

organizan en secciones que se pueden desplegar o contraer pulsando el ícono (±).

Las secciones son:

- 1. Zona de monitoreo principal (sección fija)
- 2. Presets y Sound Wizards
- 3. FM receiver Monitor Analizer
- 4. Audio Inputs and Outputs
- 5. Time Graph

NOTA

De aquí en adelante, muchas capturas de pantalla se muestran con colores invertidos para optimizar la impresión en papel de este manual.

3.4.1.1 Zona de monitoreo principal

La zona superior **es fija y se mantiene visible en todos los modos de pantalla**, tanto en la pantalla inicial de Estado como en la visualización avanzada (modo SETUP).

Contiene los siguientes indicadores (la imagen en el manual se muestra dividida en dos):

- Nivel de la entrada activa (RMS y pico dBFS)
- Indicadores de la acción de los procesos: estado de los Enhancers (activo/inactivo); acción de los AGC (dB); atenuación de los compresores y limitadores (dB); recortadores (activo/inactivo); Limitador de banda ancha (dB) y recortador de MPX (dB).

Ilustración 17: Zona de Monitoreo (lado izquierdo)

 Niveles niveles de salida de audio: Un indicador doble muestra el nivel pico y RMS. Se muestra también los niveles de sonoridad según norma EBU-R128.

Ilustración 18: Zona de Monitoreo (lado derecho)

El renglón superior de la zona fija muestra:

- El IP del equipo.
- La fuente de señal y volumen de los auriculares.
- El USUARIO, desde donde se accede al modo SETUP cuando se activa la contraseña.
- El botón para conmutar al modo de edición SETUP.

3.4.1.2 Preset and Sound Wizard

Esta sección **muestra el preset de procesado actual y los controles simplificados Wizard**, que permiten personalizar rápidamente el carácter del sonido.

El usuario puede cambiar de preset y acceder a los controles WIZARD. La opción –**CLICK HERE TO EDIT**– accede al modo SETUP para guardar cambios o crear presets.

3.4.1.3 FM receiver – Monitor Analizer

Muestra los parámetros más relevantes del análisis de transmisión de FM. La configuración del receptor y reportes avanzados se obtienen en el modo SETUP, en la opción de menú FM Receiver (ver más adelante).

3.4.1.4 Audio Inputs and Outputs

Esta sección despliega los indicadores de nivel de las entradas y salidas de audio y de las salidas compuestas MPX1 y MPX2.3.4.1.5 Time Graph

Despliega un gráfico que muestra la **evolución de la modulación en el tiempo**. Se puede cambiar entre:

- nivel de MPX
- ✓ modulación medida por el receptor de FM
- ✓ potencia MPX ITU BS412

3.4.2 Acceso avanzado (SETUP)

El botón SETUP, ubicado en la parte superior de la pantalla, permite editar los parámetros y ajustes del procesador 542APC. El acceso a este modo **puede ser restringido por contraseña**.

Al acceder al modo de configuración, aparece un **menú desplegable** a la izquierda de la pantalla. Aquí se acceden todas las instancias de ajuste y configuración del procesador.

IMPORTANTE:

- Siempre que se modifique un valor de procesado de audio, se deberá pulsar SAVE PRESET para conservar el cambio. La opción SAVE permanece destellando cuando hay cambios no almacenados.
- Siempre que se modifique un parámetro de configuración del sistema, se guardará de manera automática.
- El preset de procesado actual es un valor de sistema. Cada vez que se cambia el preset, el cambio se guarda automáticamente.

3.5 Entradas de audio

Se accede en el modo de acceso avanzado, pulsando en el menú la opción AUDIO

INPUT. Cada entrada cuenta con los siguiente controles:

3.5.1 GANANCIA

Ajusta el nivel de la señal de entrada en un rango de +/-14 dB. Para las entradas analógicas, el valor "cero" corresponde al nivel +4dBu referido a -18 dBfs (AES K18). Esto implica 18dB de margen de sobrecarga (headroom).

La ganancia de entrada se ajusta para que los picos a OVU en la consola oscilen entre -22 y -9 dBfs en el indicador de nivel de entrada del procesador.

3.5.2 TRIM R

Compensación de ganancia para el canal derecho. Permite corregir un desequilibrio entre canales en un rango de +/-3dB.

3.5.3 ST/MONO

Conmuta la entrada entre ESTEREO o MONO (suma los canales izquierdo y derecho).

Figura 19: Entrada analógica XLR y ETHERNET

3.5.4 Entrada principal y alternativas

Figura 20: Entrada AES y opciones de conmutación

La **entrada principal** se determina desde el menú MAIN SOURCE. 542 APC **conmuta automáticamente la entrada** en caso de ausencia de señal. Se pueden definir hasta dos entradas alternativas a la entrada principal. Si la señal en la entrada principal cae; el equipo conmuta a la entrada de respaldo FAIL BACKUP 1. Si ésta entrada no presenta señal, se pasa a FAIL BACKUP 2.

La conmutación se produce según sean ajustados los siguientes valores:

- LEVEL: Define el umbral por debajo del cual debe permanecer la señal para que se la considere caída. Se puede configurar en valores desde -45 a -80 dB, en saldos de 5 dB.
- FAIL TIME: Tiempo en segundos que la señal deberá permanecer por debajo del umbral LEVEL para que se la considere caída.

3.5.5 Filtros de la entrada

HI PASS: Es un filtro pasa-altos tipo Chebyshev. La frecuencia de corte se puede optar entre 0 (desactivado) 20Hz; 40Hz; 60Hz y 80Hz (de fábrica 20Hz). El filtro tiene por objeto eliminar las señales de audio subsónicas, usualmente captadas por los micrófonos.

LOW PASS: Filtro pasa-bajos. Las frecuencias de corte pueden ser 15 Khz; 16KHz y 20KHz. Se puede desactivar eligiendo None (Ninguna).

3.6 Salidas de audio

Se accede a la configuración de las salidas pulsando en el menú principal el

ícono AUDIO OUTPUT.

El equipo cuenta con cuatro salidas de audio, con ajustes de nivel independiente y opción de activar la compensación de-énfasis.

- 1. Salida analógica balanceada sobre **XLR**
- 2. Salida analógica no balanceada sobre **RJ45**
- 3. Salida digital AES-3
- 4. Streaming sobre Ethernet (AoIP).

Figura 21: Salidas analógica sobre RJ45

Las salidas analógica RJ45, digital AES3 y Ethernet AoIP permiten conmutar la fuente de señal entre la señal procesada y la señal del **receptor de FM**.

NOTA: Cuando la salida envía la señal del receptor de FM, la indicación de nivel de salida corresponderá con el nivel real al aire para el caso que la modulación sea de 100% y nivel de ganancia de la entrada FM RECEIVER sea 0 dB.

3.7 FM output – MPX

mult FM OUTPUT (MPX)

Pulsando **FM OUTPUT** se accede a la configuración de las distintos parámetros

de la transmisión:

- 1. niveles de las salidas MPX,
- 2. configuración básica del RDS
- 3. control de potencia ITU BS412

3.7.1 Nivel de MPX

Las dos salidas de banda base de FM (MPX) tienen control de nivel calibrado en voltios pico a pico (Vpp).

El nivel de MPX típicamente se ajusta para obtener el 100% de modulación en el transmisor.

Si el transmisor cuenta con ganancia de entrada MPX, ajustar el valor MPX en el procesador a 5 Vpp y usar la ganancia de entrada del transmisor para el ajuste fino.

Figura 22: Niveles de MPX

3.7.2 Calibrador – Nivel de modulación

Figura 23: Calibrador

542APC cuenta con un generador de tonos usado para el ajuste de nivel de modulación.

Cómo ajustar la modulación: 3.8 – Ajuste de la modulación en FM

3.7.3 PRE-EMPHASIS

Permite definir la curva de pre-énfasis según la norma correspondiente en cada país:

- 50uS → Europa
- 75uS → EE.UU, ASIA, Lationamérica

3.7.4 Tono Piloto y portadora RDS

Figura 24: Nivel de Tono Piloto y RDS

RDS: Determina el nivel de modulación de la sub-portadora RDS (de fábrica 4%).

PILOT: Determina el nivel del tono piloto. De fábrica el tono piloto viene ajustado en 9%. En zonas de mucha congestión de radiofrecuencia, puede incrementar la modulación del tono piloto hasta 12%, pero tenga en cuenta que si se incrementan los valores de tono Piloto y RDS, disminuye la sonoridad del audio para igual nivel de modulación.

MODE: El equipo puede conmutarse para transmitir en mono o en estéreo. Cuando este control se conmuta al modo MONO, se suprime el tono piloto y la señal componente MPX será siempre MONO.

Para conocer ventajas de conmutar a MONO: 3.8.3 – Sobre la transmisión en MONO

La conmutación se puede hacer de diversas formas:

- Desde este control. Queda guardado en la configuración de sistema.
- Forzada por un cambio de preset. Los presets tienen una variable para conmutar la transmisión a mono (ver 4.8.2 – Preset Manager). En este caso el control indicará "Forced to MONO by preset".
- Conmutada remotamente desde la aplicación 542 Lite Commander (requiere una computadora y acceso remoto por IP).

3.7.5 Compensación de la salida MPX

Figura 25: Ajustes avanzados del Codificador Estéreo

Pilot Phase

Ajuste fino de fase del Tono Piloto. Es un control avanzado que permite mejorar la separación estéreo.

SUB(L-R) adjust

Modifica el nivel del módulo L-R para compensar la desadaptación del conjunto *cable coaxil-antena*.

Para conocer como usar estos ajustes: 3.8.2 Medición y ajuste de la separación de canales

3.7.6 Control de potencia MPX ITU BS.412

Esta etapa ajusta la potencia de la señal MPX según la recomendación de la Unión Internacional de Telecomunicaciones ITU-R BS.412. Aplica solo en **países europeos**.

¡ATENCIÓN!

Si la legislación en su país no exige esta regulación, NO active este control, pues disminuirá la sonoridad en el aire.

La recomendación ITU BS.412 surge con el objetivo de eliminar interferencias entre canales de FM adyacentes, dado que la separación entre canales en muchos países europeos es de 100 KHz. Se determinó que el origen de las interferencias era la densidad del material de programa debido a los actuales métodos de procesado de audio, que generan que la portadora esté continuamente modulada en torno al 100%.

La norma entonces fija un valor máximo permitido para la energía contenida en MPX, con el objeto de reducir la densidad de la señal moduladora, pero manteniendo la modulación máxima en 75 KHz. Hay un doble límite: pico de modulación máximo y energía promedio en MPX (integrada en 60 segs). Como resultado la BS.412 obliga a las emisoras a disminuir el volumen acotando la energía permitida en MPX. Todas las radios sonaran al aire a igual nivel, sin interferirse entre sí.

La recomendación BS.412 establece un nivel de potencia máximo y un algoritmo de medición, que define como referencia el valor **0 dBr** para el máximo de potencia MPX permitido, con tolerancia de +0,2 dB. No todos los países europeos aplican la recomendación BS.412 de igual forma, algunas regulaciones permiten niveles superiores a 0 dBr o tienen objetivos escalonados de reducción de nivel MPX hasta alcanzar 0 dBr.

El control de modulación ITU BS.412 en el 542APC permite modificar el **nivel de referencia de potencia MPX**. El gráfico de tiempo (ver Ilustración 25) muestra la evolución de la potencia MPX en una ventana de tiempo de 120 segundos. Presenta una curva de integración de 60 segundos según lo establece BS.412; y un perfil de integración de tiempo corto.

3.7.6.1 Presets de procesado y BS.412

Cualquier preset de procesado puede ser usado estando activo el control de potencia MPX. Solidyne 542APC incluye presets de fábrica optimizados para trabajar en conjunto con el control de potencia ITU BS.412.

El procesador mantendrá siempre el nivel MPX dentro de lo permitido. Al haber un límite de potencia, no tiene sentido usar presets de alta sonoridad, pues se estará procesando el audio aumentando la sonoridad para luego disminuirla. Una ventaja de la regulación ITU BS.412 es que las radios pueden usar más rango dinámico.

3.8 Ajustar la modulación en FM

De fábrica el tono piloto viene ajustado en **9**% y la portadora RDS en **4**%. Usualmente no es necesario modificar estos valores. Si desea modificarlos, debe hacerlo ANTES de realizar el ajuste de modulación.

Para ajustar la modulación del transmisor de manera sencilla, proceder:

- En la pantalla de configuración del Generador Estéreo, encienda el CALIBRADOR del 542APC. El audio de entrada será reemplazado por un tono sinusoidal de 400Hz.
- Sintonice la transmisión en el sintonizador interno del 542APC y verifique el 100% en el indicador de nivel de modulación del procesador. Para un ajuste fino puede cambiar el nivel de MPX, desde la pantalla WEB del 542APC (nivel predeterminado 5 VPP).
- 3. El medidor de modulación muestra nivel pico. Si el modulador del equipo de transmisión tiene su propio medidor, verifique también la modulación.
- Apague el CALIBRADOR. Se restablece el audio de entrada, que modulará en picos al nivel ajustado con el calibrador.

NOTA

El indicador de modulación del 542APC muestra el pico de modulación y puede cambiar su integración de 0 a 1mS (predeterminado 125uS). Muchos transmisores tienen indicadores de respuesta lenta. En ese caso, la indicación de ambos instrumentos con material de programa (música y voz) puede no ser la misma, pues debido a la integración lenta el indicador del transmisor será incapaz de mostrar picos. En este caso la medición será más parecida cuanto mayor sea la densidad de picos del material de programa.

Para que la medición de modulación en el 542APC sea válida, la recepción de señal en el sintonizador debe ser óptima.

3.8.1 Sobre los picos de modulación

Debe recordarse que en muchos países se siguen las recomendaciones sobre modulación de la FCC (USA). La Recomendación 73.268 indica que la modulación de FM debe mantenerse todo lo elevada que sea posible, pero sin exceder del 100 % en picos de recurrencia frecuente ("In no case is it to exceed 100 % on peaks of frequent recurrence"). Esto indica que en picos momentáneos (y no frecuentes) puede superarse el 100 % de modulación manteniéndose dentro del marco legal. El procesador 542APC está diseñado para cumplir esta Norma FCC, permitiendo superar ligeramente el 100 % en picos no recurrentes. Al ajustar la modulación, verifique las normas de su país.

3.8.2 Medición y ajuste de la separación estéreo

En toda instalación de FM, la separación de canales en la transmisión se ve afectada por el acoplamiento del conjunto cable coaxil-antena. Cuánto se pierde de separación estéreo depende de la calidad de los elementos y su correcta instalación ¹.

542APC incluye ajustes de fase tono piloto y de ganancia del módulo (L-R) que permiten compensar en parte la no linealidad de los sistemas de transmisión, mejorando la separación de canales en la transmisión.

Para realizar el ajuste se procede del siguiente modo:

 En la pantalla FM Monitor Analyzer, realizar la medición de separación de canales. Cuanto más alto sea el número en dB, mejor es la separación. Si la indicación es mayor a 40 dB (Excellent) no es necesario realizar ajustes.

ADVERTENCIA

La medición de separación de canales introduce breves tonos audibles al aire. Es necesario que la estación esté correctamente sintonizada para que las mediciones sean válidas (ver 3.9 – Monitor analizador de FM).

2. En la pantalla STEREO GENERATOR, incrementar en 0,1 dB el valor de "SUB(L-R) Adjust".

 Repetir la medición de separación de canales y verificar si el valor de separación antes medido aumentó.

Si en lugar de aumentar disminuyera, pasar al siguiente paso (4).

Si la separación aumentó se deberá repetir el punto 2 incrementando "SUB(L-R) Adjust" en 0,1 dB y verificando nuevamente si la separación de canales sigue aumentando. Así sucesivamente hasta que ya no mejore más.

 En caso de que en lugar de haber aumentado (es decir mejorado) la separación de canales del peor de los dos valores hubiera disminuido, entonces REDUCIR en 0,2 dB el valor de "SUB(L-R) Adjust". Medir nuevamente la separación de canales, verificando que ahora sí haya aumentado. Repetir la operación en pasos de 0,1 dB hasta que ya no mejore más.

En caso que la máxima separación de canales obtenida no fuera "Excellent" puede probarse a corregir en pasos de 0,5 grados el control de "Pilot Phase" en un sentido y en otro para comprobar si puede obtenerse alguna mejora adicional.

 Una vez logrado el mejor valor posible (con buenos transmisores y antenas debiera ser Excellent >40 dB) debe guardarse el ajuste en la memoria interna pulsando SAVE en el menú de la izquierda. Si no se guarda, el ajuste se pierde en caso que se reinicie el procesador.

NOTA

No se miden valores mejores a -40 dB debido a que por encima de esa separación ha sido demostrado que el oído (aún usando auriculares) es incapaz de percibir ninguna mejora en la sensación de espacio estéreo.

1 – FM stereo separation degradation as a function of antena system VSWR, por Peter Onnigian, Jampro Antenna Company, para la 31º convención AES.

3.8.3 Sobre la transmisión en mono

La transmisión monoaural, si bien no es una práctica muy extendida, es utilizada por algunas estaciones de FM ubicadas en ciudades con mucha congestión (y escasos controles y regulación) en el espectro electromagnético. Cuando el contenido emitido tiene predominio de la palabra hablada (magazzines, periodísticos, noticias, deportes) la transmisión en estéreo no aporta ventajas significativas, pues solo es relevante para la música.

La transmisión en FM mono mejora el alcance de una emisora, y reduce significativamente las interferencias. La energía del transmisor que en estéreo se dispersa sobre un gran ancho de banda, en mono se concentra en apenas un cuarto del ancho de banda, aumentando 4 veces su potencia efectiva al aire (ver el NAB Engineering Handbook). Esto mejora la cobertura pues elimina las interferencias de radios cercanas y la distorsión por caminos múltiples en las ciudades.

Ilustración 27: Concentración de energía en transmisión mono vs estéreo

Esta ventaja técnica de la transmisión monoaural puede aprovecharse para combatir interferencias mejorando la recepción y la cobertura de la radio en los horarios en que programas hablados (talk-shows) deban competir por la audiencia. La emisora podrá transmitir mono en determinados horarios y en estéreo en otros.

Incluso, es posible conmutar la transmisión a mono cada vez que se activan los micrófonos, de manera que la música y los avisos comerciales sean emitidos siempre en estéreo. En este caso, si la entrada de los locutores es precedida por una cortina musical, es conveniente que esta música de fondo sea mono, de manera que al habilitar los micrófonos la conmutación estéreo/mono sea inaudible (incluso en auriculares).

La conmutación a mono se puede hacer de varias formas:

- Por un cambio de preset. Los presets tienen un atributo que puede activarse para conmutar el modo de transmisión a MONO cuando se pone al aire ese preset. El procesador cambia a MONO hasta que se produzca un nuevo cambio de preset.
- Cuando están los micrófonos al aire. Al igual que en el caso anterior, la conmutación la hace el cambio de preset, pero en este caso se utiliza la GPI para conmutar a un preset de "VOCES", que deberá tener activo el modo "MONO". Para conocer cómo conmutar el preset por GPI, consulte 2.6 - GPIO.
- Manualmente desde la aplicación de control Lite Commander.
- Conmutación automático por horarios mediante programación en la aplicación Lite Commander.

El sintonizador de FM interno permite realizar **mediciones sobre la onda de radio recibida**. Se accede desde la opción FM RECEIVER – ANALIZER en el modo SETUP.

Usualmente la radio sintonizada es la estación en la que está trabajando el procesador, pero se puede sintonizar cualquier emisora y visualizar sus valores.

3.9.1 Sintonizador de FM

El sintonizador está asociado a un monitor de modulación, que muestra en tiempo real de diversos aspectos de la transmisión de FM, analizando la señal de RF de la estación sintonizada.

MUY IMPORTANTE

Las mediciones son valederas solo cuando la estación de radio está correctamente sintonizada por el receptor. Si la estación sintonizada llega débil (RF Level menor a 40dB) o presenta mucha distorsión por rebotes (multipath mayor a 10%) las mediciones no son válidas. En esta condición, los campos de datos se mostrarán oscurecidos.

- **ON/OFF** Enciende/apaga el sintonizador de FM. Cuando la recepción es muy mala o no es posible sintonizar la frecuencia ingresada, el sintonizador se apaga.
- FREQ Aquí se ingresa el dial de la estación de radio en MHz, usando un punto para los decimales (Por ejemplo: 95.9). Para sintonizar una emisora:
 - Ingrese el valor en el campo de texto usando el teclado del computador. Confirme con ENTER.
 - Al pulsar ENTER la radio es sintonizada. Si el sintonizador estaba apagado, se enciende.
- Reception Quality Indica si la recepción de la estación sintonizada es adecuada para validar las mediciones. En caso que la recepción sea inapropiada, se indicarán debajo las variables fuera de rango (*"RF low level"; Multipath, Noise, Adjacent channel interference*). Cuando la recepción no permite realizar mediciones, los campos de datos son oscurecidos. La buena recepción depende del tipo y configuración de la antena utilizada.

Tipos antenas y conexión: 2.4 – Antena receptora de FM

- **RF LEVEL** Nivel de señal RF en la antena del equipo. El nivel de RF debe ser mayor a 40dB para que las mediciones sean valederas.
- Multipath Porcentaje de distorsión causada por la propagación por múltiples reflexiones de la onda de radio. El nivel debe ser menor a 10% para que las mediciones sean válidas.
- Band Type Determina el tipo de banda de FM, que varía según la región.
- RBDS Mde Activa RBDS, que es una modificación de la norma RDS usada solo en los EE.UU. de América.

3.9.1.1 DIAL SCAN

Esta herramienta explora la banda de FM en intervalos de 100 KHz y genera un gráfico con la intensidad de recepción de cada emisora detectada.

3.9.2 Análisis de transmisión

Figura 29: Modulación

TOTAL MODULATION: Indica el nivel de modulación de FM medido sobre la señal sintonizada.

MODULATION MEASUREMENT RESPONSE: Tiempo de integración de la medición. Se puede modificar entre Instantánea, 125uS; 250uS; 500uS y 1mS. Se recomienda 125uS para la medición pico. La integración apropiada para que la medición tenga validez legal varía según las normas de cada región.

Ilustración 30: Parametros de transmisión

PILOT: Porcentaje de modulación del tono piloto. El valor predeterminado es 9%.

RDS: Porcentaje de modulación de la sub-portadora RDS. El valor predeterminado es 4%.

AUDIO L/R: Nivel de audio, indicado en dBfs.

CARRIER OFFSET: Indica la desviación de la frecuencia de portadora, en KHz.

RDS BER (bit error ratio): Es una medida de la calidad de recepción de datos RDS. Un valor 0% indica que no se detectaron errores y 100% indica que no es posible decodificar los datos RDS.

RDS DATA: Muestra los textos transmitidos por RDS.

-	RDS DATA	
	RDS DATA	RT: 542 Audio Processor
	RT+	Artist:
	AFlist:	

3.9.3 Separación de canales, distorsión y SNR

Ilustración 31: Medición de separación de canales y distorsión

Esta función permite medir la separación de canales y la distorsión armónica+ruido, sobre la señal de aire sintonizada. Estas mediciones contemplan el conjunto procesador + codificador estéreo + transmisor + antena.

Las mediciones se pueden hacer a distancia y sin interrumpir la transmisión. De este modo, personal técnico de Solidyne podrá evaluar, detectar y diagnosticar remotamente distintos aspectos de la instalación y funcionamiento del equipo y de la cadena de transmisión.

Para llevar a cabo las mediciones de ruido y separación de canales, <u>se interrumpe el audio de programa y se in-</u> yecta un tono audible de muy corta duración al aire (del orden de 250 milisegundos). La medición de SNR requiere suprimir la señal del aire por 2 segundos.

La medición se hace pulsando *"RUN new measure*ment". El resultado se muestra en pantalla.

SEPARACIÓN DE CANALES					
> 40 dB	Excellent				
35 a 40 dB	Very good				
30 a 35 dB	Good				
25 a 30 dB	Fair				
< 25 dB	Poor				

Desde los controles avanzados del codificador estéreo es posible optimizar la separación de canales.

Cómo optimizar la separación estéreo: 3.8.2 Medición y ajuste de la separación de canales

3.9.4 REPORTE TÉCNICO de transmisión

El botón **"DOWNLOAD FULL TEST"** ejecuta todas las mediciones y las vuelca en un archivo de texto, junto a los valores del Analizador de FM. El archivo se guarda en la carpeta de descarga predeterminada del navegador web utilizado. Este reporte puede ser solicitado para soporte técnico.

Si el sintonizador está apagado, no pueden generarse mediciones ni reportes. Para encender el sintonizador pulse el icono "ON/OFF" y espere unos instantes hasta que se estabilicen los valores. Luego genere el reporte.

ADVERTENCIA

El reporte introduce breves tonos audibles al aire.

3.10 RDS

542APC cuenta con un codificador RDS interno. RDS es un sistema que permite añadir a una señal de FM información adicional un canal de datos que permite:

- La sintonía automática del receptor a una red de emisoras seleccionada por el usuario. Permite escuchar la misma estación durante un largo viaje por la ruta, sin necesidad de sintonizar manualmente a otro centro emisor de la misma red, cuando la recepción pasa a ser deficiente al salir de la zona de servicio de una emisora determinada.
- La presentación en la pantalla del receptor del nombre de la red de emisoras que está escuchando, por ejemplo Radio 1, y del tipo de programa que está recibiendo en ese momento: noticias, deportes, música, variedades, religioso, etc.
- 3. La recepción automática de información relacionada con el tráfico. Cuando se selecciona esta característica se da prioridad a las noticias sobre el tráfico, de forma que el receptor conmutará, de forma automática, dentro de una misma red, a la emisora que emita información sobre el tráfico, y una vez terminada dicha información volverá a sintonizar, automáticamente, la emisora previamente seleccionada.

3.10.1 Configuración básica del RDS

La configuración y control del RDS se realiza por IP a través del puerto ETHERNET del 542APC (ver 1 en Fig.1).

Los parámetros básicos RDS se definen desde la interfaz WEB del 542. En a la opción FM OUTPUT se muestra un diagrama con RDS y el acceso a su configuración.

	RD	S CONFIG							
Dynamie	c updating of RDS data can be done rem	otely by Ethernet TCP through the AUDICOM SOF	TWARE .						
	For advanced settings use Mag	icRDS software by remote tcp connection							
DEMOTE Not Connected TOR SDO DORT 9724									
REMOTE	Not Connected	TCP KDS PORT	Арру						
CONNECTION									
Default PS	SOLIDYNE PL 542A	PROGRAM TYPE News	M/S Music						
			-						
Traffic PS	* RDS * Traffic Announce (IA) can be enabled using GPI TA STATE:ON iew system settings)	OFF						
		an ajatan atangaj							
DV/01 DO	1-1 DV(NDO								
DYN PS	LUST DYNPS	LOOP 0.58 V SCROLL 2.58							
RT	NAME		ON						
	TO BILL								
REGION Europe	-	READ	SAVE						

TCP RDS PORT: Define el puerto TCP para recibir la comunicación del software RDS. El puerto TCP predeterminado es **9762**. Para modificarlo ingrese el nuevo valor y pulse APPLY. Para comandar el codificador RDS se requiere la instalación en la PC del software **Solidyne-Magic RDS** (ver a continuación) o del software Solidyne Audicom.

Default PS (Program Service): Es un texto fijo, usualmente el nombre de la emisora. El estándar RDS permite una extensión máxima de 8 caracteres.

PI (Program Identification): Se usa para identificar una red de emisoras o repetidoras de una misma cadena de radios, para que el receptor cambie automáticamente de un emisora a otra de la red, según la calidad de recepción. Es un número hexadecimal de cuatro dígitos (0000 a FFFF).

Program Type: Identifica el tipo de contenido emitido.

M/S: Identifica si el contenido emitido es música o palabra.

TA State (Traffic Announcement): Identificador on/off para indicar cuando un anuncio de tráfico está en el aire. Se puede controlar manualmente o remotamente vía GPI.

Traffic PS: Se muestra en reemplazo del campo PS cuando el flag de anuncio de Anuncio de Tráfico está activo. Si no necesita usar el Traffic PS, deje este campo en blanco.

DYN PS: El campo Dynamic PS se implementa usando el campo normal PS y reemplazando secuencialmente la información. De este modo se soportan mensajes de texto de hasta 64 caracteres, que se mostrarán en lugar del campo PS fijo. El texto se desplaza horizontalmente con velocidad determinada por el valor Scroll. DYN PS se usa para comerciales noticias y textos de emisión (título e intérprete de las canciones).

Loop: Tiempo entre repeticiones cíclicas del texto Dynamic PS. Durante este tiempo se muestra el texto Static PS.

Scroll: Establece la velocidad alta o baja de desplazamiento de la transmisión PS. La alta velocidad no funciona en algunos receptores, especialmente en automóviles, o en malas condiciones de recepción. El motivo no está relacionado con el codificador RDS y se debe a que el desplazamiento de PS nunca se ha incluido en el estándar RDS. Debido a esto, no se recomienda la alta velocidad.

NOTA

El uso del campo Dynamic-PS está restringido en algunos países y no es una implementación del estándar RDS. El fabricante no es responsable por el mal uso de esta funcionalidad. Algunos receptores pueden no mostrar correctamente el campo Dynamic/scrolling PS por características propias del receptor.

3.10.2 Uso avanzado - Magic RDS

Para uso avanzado de RDS, se requiere el **software externo MagicRDS** corriendo en un computador con Windows y conectado a misma red que el 542APC. MagicRDS permite recibir datos de actualización permanente (ej: los títulos de las canciones) de diversos sistemas de gestión de aire (play outs).

SOLIDYNE AUDICOM SOFTWARE

Si la emisora cuenta con el sistema de gestión **Solidyne Audicom**, no es necesario usar MagicRDS para actualización dinámica de los títulos emitidos. La comunicación es directa entre Audicom y el procesador a través de la LAN. Para detalles consulte la documentación de Audicom. MagicRDS se descarga del siguiente enlace: <u>www.solidy-nepro.com/DW/setupRDS.rar</u>

- 1. Una vez descargado, instale y ejecute Magic RDS.
- 2. En Magic RDS ir a Opciones \rightarrow Preferencias.
- 3. En la ventana Preferencias, elegir General.

General Ajustes Locales Botones Misc. Fuentes de Texto Tipo de Conexióm Puerto RS232 -Opcione: Serial RS232/USB > Autoguardar Ethernet TCP/IP Auto Save settings 🛱 List. Demo only 🔲 Datos Log TX a fichero Ocultar información conexión Opciones del Puerto Vel.Puerto COM 1200 bps ✓ Bidireccional Priorizar Minimizar a Cerrar @ 2400 bps 1 Autodetectar velocida 4800 bps Tiempo Desconex.(msea -Prioridad -Desbloquear Passv 9600 bps 2000 韋 Idle 19200 bps Norma C High Conectar a Servidor TCP/IF -Color de Fuente/Imagen de Fondo Host: 192,168.0.81 (none) Puerto 9762 Importar. Limpiar Window Text -Registrar ficheros RDS (*.rds)

Figura 32 - Configuración en el software MagicRDS

- 4. Cambiar Tipo de conexión a "Ethernet TCP/IP".
- En **Puerto** ingresar el puerto TCP definido en 542APC. El predeterminado es 9762. En el 542APC el puerto TCP se configura desde el control WEB en el panel "RDS Config" dentro de la opción FM OUT-PUT (MPX) Ver *"3.11 Ajustes del sistema"*.
- 6. En *Host* se ingresa la dirección IP del 542APC. La misma se muestra en la pantalla de la unidad.

Si va a utilizar RDS con actualización de datos en tiempo real, vinculado a un software de gestión de aire; se debe configurar 542 con IP fija.

ACCESO REMOTO

Cuando el procesador está conectado en otra red, alejado del estudio, se puede **enviar los datos RDS a través de Internet**. El ISP deberá proveer en la LAN remota una dirección IP fija. Esta dirección IP se ingresa en MagicRDS o Audicom RDS.

La LAN remota se debe configurar para redirigir los paquetes entrantes por el puerto 80 a la dirección IP local asignada al 542APC (port forwarding), y también redirigir los paquetes que usen el puerto 9762 (puerto configurado en el software RDS).

Por detalles sobre configuración y uso avanzado consulte la Ayuda en Magic RDS.

3.10.3 Conexión de RDS al transmisor

Los equipos 542APC no requieren de conexión especial para RDS. La señal MPX contiene los datos RDS.

La señal digital que contiene información **RDS**, se transmite con una velocidad de 1187.5 bit/s y modula una **sub-portadora de 57KHz**, utilizando el método de modulación de amplitud con portadora suprimida, que se suma a la señal múltiplex estéreo que se envía a la entrada del transmisor.

3.11 Ajustes del sistema

	-		
a	General Alarms Status & Log		
Ð	GPIO CONFIG GPIACTION VOICE CHANGE PRESET V02 VOICE-MID	SECURITY Disable Password Protection (auto-login)	PASSWORD 1234 Apply
	GPO TRIGGER Audio Silence	FRONT PANEL CHANGES	(up to 8 chars, use only capital letters A-Z and numbers 0-9)
	USER INTERFACE LOUDNESS EBU REF: 0 de	FS	Enable Tooltips
	NETWORK		
	HOSTNAME 542APC-3A	MAC D8:80:39:32:F	D:3A
	IP 192.168.0.80	DNS1 192.168.0.1	
	MASK 255.255.0	DNS2 0.0.0	
	GATEWAY 192.168.0.1	ENABLE DHCP	Apply
-	TECHNICAL REPORT (Send to Support Team)		

3.11.1 GPIO CONFIG

GPI VOICE CHANGE PRESET: Cuando la **GPI** se activa se conmuta el preset de procesado. La señal de disparo se genera en el Estudio cuando se habilitan los micrófonos, y puede arribar al procesador por conexión de hardware, o vía LAN (modelos con opción /AoIP). El campo a la derecha establece el preset que se aplicará cuando GPI esté activada (predeterminado: VOICE-LOUD).

GPO TRIGGER: Despliega una lista de acciones que provocan la activación de la salida GPO. Las opciones son:

- 1. AUDIO SILENCE
- 2. INPUT FAIL BACKUP
- 3. OVERMODULATION
- 4. LOW RF POWER
- 5. FORCE FM MONO

Cómo conectar las GPIO: 2.6 - GPIO

3.11.2 SECURITY

Permite habilitar la contraseña de acceso desmarcando la opción Disable Password Protection (default activado). La contraseña predeterminada es **1234**. Para modificar la contraseña, escribirla directamente en el campo PASSWORD y pulsar APPLY. Se aceptan hasta 8 caracteres, solo letras mayúsculas y números.

La opción **FRONT PANEL CHANGES (LOCK/UNOCK)** bloquea el acceso desde el panel frontal. Cuando se bloquea, será necesaria la contraseña para acceder desde el frente de la unidad.

3.11.3 User interface (Interfaz del usuario)

LOUDNESS EBU REFERENCE: Establece el nivel de referencia para la medición de sonoridad que se muestra en la sección de monitoreo general (default 0 dBfs).

AUTO-OPEN LEFT MENU: Al activar esta opción, el menú de opciones se despliega automáticamente al acercar el *mouse* y se contrae al retirar el mouse de esa zona.

ENABLE TOOLTIPS: Habilita mensajes emergentes con indicaciones que aparecen sobre algunos controles e indicadores.

3.11.4 NETWORK

Configuración de la red. De fábrica viene en modo DHCP.

Puede desactivar esta opción y asignar una **dirección IP estática**. La dirección IP se informa en el frente del equipo, o se obtiene vía LAN con la herramienta *Solidyne Multi-Discovery*.

Cómo acceder via red: 3.3 Acceso y control vía red

3.11.5 TECHNICAL REPORT

Genera un reporte con parámetros de funcionamiento y configuración del equipo, para ser enviado al soporte técnico. El reporte se guarda en la carpeta de descarga predeterminada del navegador.

3.12 Alarmas, estado y registros

3.12.1 Alarmas

Se accede al panel de alarmas pulsando **SYSTEM** en el menú de la izquierda y eligiendo la pestaña **ALARMS**.

¡ATENCIÓN!

Los parámetros que disparan alarmas se analizan **en base a la señal del sintonizador de FM**.

Si la estación sintonizada llega débil (RF Level menor a 40dB) o presenta mucha distorsión por rebotes (multipath mayor a 10%) las mediciones no son válidas. En esta condición, los campos de datos se muestran oscurecidos y no se generan alarmas.

542APC puede enviar alertas vía correo electrónico ante la ocurrencia de los siguientes eventos:

- 1) Silencio de audio
- 2) Sobre-modulación
- 3) Baja potencia RF.

La pantalla de alarmas presenta las siguientes opciones:

Ilustración 33: Configuración de alarmas

E-mail Send To

Dirección de correo a la cual serán enviadas las alertas habilitadas. "Send Test" envía un correo de prueba a la dirección ingresada.

NOTA

Si se requiere que las alertas lleguen a **más de una dirección** de correo, puede usar la función de reenvío automático (mail forwarding) de la cuenta de correo declarada.

Casilleros LOG e E-MAIL

Cuando el casillero está marcado, se habilita el registro de en la memoria interna (log) y/o el envío de alarmas vía e-mail para ese suceso.

AUDIO SILENCE

Envía un alerta cuando se detecta un silencio cuya duración supera un tiempo límite establecido. El tiempo límite esta dado en segundos y se ajusta con el control deslizante de la derecha.

El **umbral de nivel** que determina cuándo la señal es considerada "silencio" **es el definido para el sistema de respaldo de la entrada** (fail backup). Ver 3.5.4 – Entradas principal y alternativas.

Para la detección de silencio se analiza la señal del receptor de FM post-control de ganancia de la entrada 5-FM RECEIVER. Por lo tanto, esta ganancia afecta el disparo de las alarmas por silencio. En caso de duda, observar el indicador de nivel de la entrada 5-FM RECEIVER en relación al umbral de nivel definido.

OVERMODULATION

Envía un alerta si se detecta que la modulación supera el valor establecido para las alarmas. El valor se ajusta con el control deslizante de la derecha. Este valor no incide de ningún modo en la transmisión.

LOW RF POWER LEVEL

Envía un alerta si se detecta una baja en la potencia transmitida. Para ajustar el valor, pulse "Set REF" en con-

diciones normales de transmisión. Luego usando el control de la derecha indique el porcentaje de pérdida de potencia para el cual se activará la alarma. Este valor no incide de ningún modo en la transmisión.

SYSTEM START

Es posible generar una alarma en caso de que se reinicie el equipo (por ejemplo por corte en el suministro eléctrico).

SYSTEM ERRORS

De uso interno. Solo se registran eventos de sistema en el SYSLOG.

3.12.2 Status y Logs

SYSTEM TIME: Cuando el equipo está conectado a una LAN con acceso a Internet mantiene sincronizada su hora vía un servidor NTP.

SYNC FROM PC permite sincronizar contra la hora del computador desde el cual se accede. La fecha y hora solo se utiliza para registrar eventos del sistema en los reportes técnicos.

SYSLOG: Es un registro de eventos alojado en la memoria del equipo. Reservado para uso de personal especializado en tareas de diagnóstico y soporte técnico.

3.13 Lite Commander

LiteCommander es una aplicación Windows que permite:

- conmutar el preset de procesado remotamente
- cambiar el modo de transmisión entre estéreo/ mono (ver "3.8.3 Sobre la transmisión en mono").

La conmutación puede ser manual o programada según una pauta horaria.

La aplicación se descarga gratis de:

http://www.solidynepro.com/DW/lite.rar

Las **instrucciones de instalación y uso** se instalan junto con LiteCommander (PDF). El instalador crea un acceso *"Solidyne Audio Processor"* en el menú *Inicio* de Windows.

LiteCommander se comunica con el 542APC vía IP. El computador debe tener acceso a la dirección IP del procesador.

Ilustración 34: Control remoto LiteCommander

Sección 4

Las etapas de procesado de audio se acceden en la pantalla SETUP, desde la opción de menú PROCESS.

Las distintas etapas de procesado se muestran agrupadas en solapas o *tabs*. De izquierda a derecha, el orden en que aparecen los procesos corresponde al orden real de interconexión de las etapas, con excepción de WIZARD que no es una etapa de procesado en sí misma.

- 1. WIZARDS
- 2. ENHANCERS
- 3. ENHANCER EQ
- 4. AGC
- 5. MULTIBAND AGC
- 6. MULTIBAND LIMITER
- 7. MIX & CLIPER FINAL LIMITER

4.1 WIZARD

Los controles WIZARD trabajan sobre los **presets del usuario**, y permiten cambiar rápidamente el carácter del sonido y crear nuevos presets sin necesidad de modificar individualmente distintas etapas de procesado. No se requieren conocimientos avanzados para usar estos controles.

Cómo crear y gestionar presets: 4.8 – Gestión de los presets

Los controles WIZARD permiten:

- Modificar el carácter de un preset en cuatro aspectos esenciales: BASS – BRIGHT – COMPRESSION – LOUDNESS.
- Conmutar y ajustar de modo básico las etapas ENHANCERS: VOICE SIMETRIZER, EQ, BASS ENHANCER, STEREO ENHANCER.

Cada control WIZARD cambia múltiples parámetros de las etapas de procesado de forma simultánea y sincronizada, para lograr el ajuste deseado.

/izard	Advanced *	Enhancers	Enhancer EQ	AGC	Multiband AGC	C Multiban	d Compressor	Multiband Lim	iter Mix	& Clippers & Fi	nal Limiter	
						SOUND WIZ	ARD					
	Bass		_			•					4.0	ENHANCE
	Bright				•						2.5	
			1									In I
	Compressi	n							• .		7.5	*
	Loudness						•				5.5	((+4)
			1. I.	· ·					· ·	·		. 37

Los cuatro controles BASS, BRIGHT, COMPRESSION y LOUDNESS están relacionados entre sí pues algunos parámetros son afectados por más de un control. Por este motivo, cuando se mueve un control, se recalcula la posición de todos los controles Wizard.

Cuando se carga un preset, los controles WIZARD se posicionan de acuerdo a los ajustes del preset actual. Visualizar la posición de los controles WIZARD da una idea

Procesado de audio

de las características sonoras de los presets y permite compararlos.

Usuarios avanzados que busquen un ajuste más específico y preciso del sonido, podrán modificar a su criterio las distintas etapas del procesador.

CONSEJOS PARA USO DE LOS WIZARD

Si bien tienen un rango de acción amplio, conviene **usar los controles WIZARD para aplicar cambios moderados a un preset**. Partir siempre del preset que más se acerque a las características buscadas.

Por ejemplo: si se busca un procesado de alta sonoridad, no se recomienda partir de un preset suave y llevar el control WIZARD LOUDNESS al máximo. Se debe partir de un ajuste tipo MaxLoudness, puesto que ya está diseñado para obtener máxima sonoridad (la interacción entre los distintos procesos está optimizada).

4.2 Enhancers

4.2.1 Voice symmetrizer

Es sabido que, por una particular disposición de las cuerdas vocales, la emisión sonora que éstas generan son pulsos triangulares asimétricos. Las tres cavidades que filtran y conforman estos formantes, para obtener los sonidos vocales, no modifican esta característica intrínseca de la voz humana. Toda la palabra hablada y aún cantada es fuertemente asimétrica. Esto crea una importante reducción de la energía de la señal de audio, particularmente al pasar por un compresor. Esto es debido a que un compresor ajusta su nivel de compresión para el pico más elevado, no importa su polaridad. De esta forma cuando una polaridad es ajustada al 100%, la polaridad opuesta difícilmente supere el 50%, debido a la asimetría.

Es un fenómeno conocido el que la música tienda a sonar más fuerte que la voz humana, luego de pasar por un compresor. Esto es debido a que los sonidos musicales son simétricos, mientras que la voz humana no lo es. Para corregir esta anomalía sin introducir alteración en la calidad sonora, se emplean **simetrizadores de pico**.

Esta técnica, basada en un descubrimiento del Dr. Kahn, adquiere validez internacional con los trabajos del Ing. Oscar Bonello, particularmente el publicado en el Journal of AES, Vol.24,5 en el que se describe, por primera vez, la teoría de su funcionamiento.

4.2.2 Expander

El objeto del expansor es mejorar la relación señal/ruido del sonido al aire. La compresión multibanda, si bien aumenta la sonoridad, reduce la relación S/R. Este efecto sería molesto porque, de no ser por la acción del expansor, podría escucharse el piso de ruido en pausas prolongadas que normalmente se generan con la palabra.

El control umbral (THS) ajusta el punto a partir del cual el expansor comienza a reducir su ganancia, a medida que se reduce el nivel de la señal. Está expresado en dBfs.

4.2.3 Bass enhancer

Este control refuerza medios-graves en el rango 50 – 300 Hz, mejorando la presencia de bajos en parlantes de tamaño reducido. A diferencia del ecualizador, que enfatiza las componentes presentes en la señal, el refuerzo de graves sintetiza y agrega armónicos generados a partir de las frecuencias mas bajas.

- **FREQUENCY:** Es la frecuencia de corte del filtro pasa-bajos. Define el rango de frecuencias usado para generar armónicos.
- **INTENSITY:** Determina la cantidad e intensidad de armónicos generados
- SUB-GAIN: Nivel de graves sintetizados que se agregan a la señal.

NOTA Cuando se utiliza la conmutación de preset para voces, conviene que los ajustes usados para música y voz tengan BASS ENHANCER en la misma condición (habilitado o deshabilitado).

4.2.4 Stereo enhancer

Cualquier emisora de FM estéreo que transmite con realce del campo estéreo, se destaca frente a transmisiones estéreo convencionales por tener un sonido "más envolvente". Este efecto contribuye a aumentar la sonoridad percibida por el oyente. Al escuchar con auriculares, el realce es más notorio.

El realce estéreo usa un algoritmo de expansión del estéreo para simular sonido envolvente en sistemas de dos canales. La audición tiene mejor respuesta a los cambios de fase entre oídos por debajo de los 2000Hz, por eso si se incrementa la diferencia de fase se obtiene una imagen estéreo más ancha.

Hay dos parámetros de control:

Figura 35: Realce estéreo

Cut Freq (Hz): Define la frecuencia de corte del filtro paso-bajo, que determina el rango de frecuencias de la señal desplazada en fase que es añadida.

Intensity: Es el nivel de la señal expandida que se suma al audio original.

NOTA

Cuando se utiliza la **conmutación de preset para voces**, conviene que los ajustes usados para música y voz tengan STEREO ENHANCER en la misma condición (habilitado o deshabilitado).

4.3 Enhancer EQ

Ecualizador paramétrico de 4 bandas. Para que el uso de la ecualización tenga sentido, cada corrección debe afectar a un rango de frecuencias menor que el ancho de la banda de procesado que la contiene (LOW, MID1, MID2, PRES, HI). Lo anterior aplica especialmente para frecuencias por debajo de 800 Hz, comprendidas en las bandas LOW y M1.

Como referencia, un factor Q=3 corresponde a un ancho aproximado de $\frac{1}{2}$ octava respecto a la frecuencia central, mientras que un factor Q=4 es aproximadamente de $\frac{1}{3}$ de octava.

Por ejemplo, una atenuación de -3dB centrada en 250 Hz con factor Q=2, tiene un ancho de 125 Hz. La frecuencia central 250 Hz "cae" dentro de la banda M1, que se extiende de 125 a 800 Hz. La corrección entonces afecta al 50% de las frecuencias dentro de M1 (125 a 375 Hz). Si se aumenta el factor Q, la atenuación será más específica sobre la frecuencia central. Pero si, por ejemplo, se usa un Q de 0,5, la corrección tendrá un ancho de 500 Hz, es decir que se extiende LOW y M1.

En el ejemplo anterior, cabe analizar si conviene producir esta atenuación desde el EQ paramérico, o desde la mezcla de las bandas en el ecualizador de densidad. El efecto será sutilmente distinto.

Como regla general, el ecualizador de audio debe usarse para realizar cortes o realces muy puntuales. La curva global o perfil de ecualización del sonido se define usando el AGC multibanda y el EQ de densidad.

Figura 36: Ecualizador paramétrico de 4 bandas

4.4 Control Automático de Ganancia de Banda Ancha (WB-AGC)

Figura 37: Control automático de ganancia (AGC)

El AGC de banda ancha trabaja con la señal de audio en rango completo. Compensa diferencias de nivel en la señal de entrada del procesador, para que ésta ingrese a las siguientes etapas con nivel constante. Los tiempos de acción del AGC son un ajuste muy importante, y cambian en función de las características del material de audio. Ejemplo: un ajuste optimizado para voces requerirá tiempos diferentes a otro pensado para música.

4.4.1 Nivel de referencia (Target level)

El **nivel de referencia** es el valor al cual el AGC ajusta la señal de entrada; amplificándola cuando es menor que ese valor, y atenuandolá cuando es más alta. La salida del AGC tiende siempre al nivel de referencia. La variación del nivel de salida del AGC se muestra en forma dinámica en un **gráfico de tiempo** (AGC Out).

El **rango de compensación de ganancia** (gain range) determina el grado de atenuación o amplificación que el AGC puede aplicar a al señal. Por ejemplo: si el rango de ganancia es 20dB, el AGC podrá compensar variaciones de 40dB en la señal de entrada.

NOTA

Si el umbral de retención cae dentro del rango de compensación de ganancia, la señal se congela, no se compensa.

Ejemplo: si retención es -40dB, referencia -22dB y rango es 20dB; el AGC podría compensar una señal de -44dB. Pero si la señal cae a -44dB el AGC se congela. La compensación de ganancia ocurrirá a partir del umbral de retención.

4.4.2 Retención (Hold)

El AGC es del tipo retenido. Si la señal de entrada cae bruscamente, el AGC NO varía su ganancia, sino que "congela" (HOLD) su valor actual; permaneciendo en ese estado hasta que la señal supere el umbral de retención "Hold". El valor no permanece congelado indefinidamente. Mientras la señal permanece por debajo del umbral "Hold"; el nivel de AGC **se irá "resbalando" hacia el nivel de referencia**, con una pendiente definida por los valores "Return to reference" (definidos en fábrica).

Sin esta característica; el AGC compensaría continuamente a la entrada, y en silencios prolongados comenzaría a levantar ruido de fondo, porque en ausencia de señal, el AGC incrementaría la ganancia al máximo. Con la técnica de gatillado se elimina este inconveniente.

Por otro lado, es posible ajustarlo para conservar parte del rango dinámico en aquella música que se caracteriza por grandes cambios entre *pianos* y *fortes*. Es decir: si luego de un pasaje fuerte hay una sutil entrada de un instrumento, el AGC quedará congelado en su nivel anterior, dando lugar al contraste de volumen.

4.4.3 Tiempo de ataque del WB-AGC

Es el tiempo que tarda el AGC en reducir su ganancia cuando la señal de entrada se incrementa. Como regla general, puede decirse que el tiempo de ataque debe ser lento para evitar que el AGC "se mueva" con incrementos de amplitud transitorios (una carcajada o un golpe musical). Para la voz, tiempos de alrededor de 15 seg. resultan adecuados, mientras que para música pueden convenir valores de 20 seg. o más lentos.

Este tiempo de ataque solo es válido mientras la señal se mantenga dentro de la ventana de nivel de trabajo definida. Cuando el nivel de señal cae fuera de la ventana de trabajo, el AGC pasa a modo de respuesta rápida (Ver *Outside Window* a continuación).

Nótese que cuando aumenta bruscamente el nivel de la señal, durante el tiempo de ataque del AGC la señal es contenida por los compresores multibanda, que actúan fuertemente hasta que el AGC ajusta su nivel. Dependiendo de los ajustes de las etapas siguientes, un ataque demasiado lento del AGC puede ocasionar una excesiva compresión en la señal en las etapas siguientes (sobre todo en las voces), lo cual genera un efecto audible.

4.4.4 Tiempo de recuperación del WB-AGC

Cuando la señal de entrada disminuye su nivel, el AGC comienza a incrementar su ganancia para compensar la caída de nivel en la entrada. El tiempo que tarda el AGC en compensar la reducción del nivel de entrada se denomina tiempo de recuperación. Recuerde que el objetivo del AGC es que la señal ingrese a las etapas de procesado con un nivel muy estable e independiente del nivel de salida de la consola. Este tiempo de recuperación solo es válido mientras la señal se mantenga dentro de la ventana de nivel de trabajo definida. Cuando el nivel de señal cae fuera de la ventana de trabajo, el AGC pasa a modo de respuesta rápida (Outside Window).

NOTA

Los tiempos del AGC de banda ancha (WB-AGC) interactúan con los tiempos del AGC multibanda (MB-AGC), dado que ambos controles modifican el nivel de la señal al mismo tiempo. Cuando el MB-AGC está activo, la variación de ganancia a la salida de ambos AGC's será más rápida que la indicada por los controles del WB-AGC, dependiendo del rango de acción en que esté trabajando el AGC multibanda.

4.4.5 Outside window (fast times)

Define un rango o *ventana* de niveles que determina el comportamiento del WB-AGC en función del nivel de entrada. Mientras la señal de entrada se mantiene dentro de la ventana, el WB-AGC funciona con los tiempos de ataque y recuperación principales. Si la señal de entrada cae fuera de esta ventana, el WB-AGC reacciona usando los tiempos rápidos definidos en *"Outside Win-dow"* (ATK/REL) hasta que la señal de entrada retorne a la ventana de nivel.

Una vez que la señal retorna a valores de la ventana de Nivel, el WB-AGC sigue actuando hasta llevarla al Nivel Destino (Target Level) pero usando los tiempos de ataque y recuperación principales.

La ventana de nivel está determinada por el valor *Fast Window*, que se expresa en dB referidos al Nivel de Destino. Es decir, la ventana de niveles será:

De [Target Level] – [Fast Window] a [Target Level + Fast Window]

Ejemplo: *Fast Window* = 12dB; Target Level = -22dBfs; entonces la ventana de nivel WB-AGC será -34dBfs a -10dBfs

La velocidad de reacción rápida está determinada por el valor ATK&REL y se expresa en seg/6dB. Siguiendo el ejemplo anterior; si ATK&REL es 1 seg/6dB; y el nivel de entrada cae a -42dBfs, el WB-AGC tardará 1 segundo en incrementar el nivel de entrada para llevarlo dentro de la ventana de nivel (-34dB). Una vez alcanzada la ventana de nivel, el WB-AGC sigue actuando pero con los tiempos de ataque y recuperación principales.

CONSEJOS

- Los tiempos de ataque y recuperación del WB-AGC deben ser cuidadosamente ajustados para que no se evidencie su acción. Si el tiempo de ataque es excesivamente largo, la acción del WB-AGC podría notarse (puede notarse la reducción de nivel). Si el tiempo de recuperación es muy largo y el de ataque muy corto, cuando alguien grite (una tos, una carcajada) el WB-AGC reducirá bruscamente su nivel y tardará luego en recuperar su nivel. En ese momento el efecto será similar a "alguien bajó el volumen de la radio".
- Para música, conviene que el tiempo de recuperación sea largo. Si es muy corto, su acción se hará evidente, y se perderán por completo los contrastes de volumen (es decir la dinámica de la música).
- De lo anterior se deduce que para trabajar con un único ajuste de procesado, se deberan adoptar valores de compromiso. Por eso es recomendable utilizar dos ajustes para música y voz y trabajar con la conmutación de presets disparada por GPI (al activarse los micrófonos).

4.5 AGC multibanda

Mientras que el Control Automático de Ganancia de Banda Ancha (WB-AGC por su denominación en inglés) realiza un ajuste del nivel global de la señal de programa; el AGC multibanda (MB-AGC) ejerce un control de nivel más preciso sobre cada banda, que permite:

- **Optimizar el nivel en cada banda** de frecuencias. El AGC Multibanda puede reaccionar más rápido que el WB-AGC para contener o reforzar la señal en cada banda. Dependiendo de cómo se nivelen las bandas y del balance espectral del material, esto incrementa la sonoridad.
- Imprimir al sonido un perfil de ecualización consistente que se mantendrá estable con independencia de las características de la señal de programa.
- Evitar la acción excesiva de los limitadores cuando una o mas bandas tienen niveles elevados de señal.

La señal de audio se divide en 5 bandas con los siguientes cortes fijos:

LOW:	20 Hz – 125 Hz
MID-1:	125 Hz – 800 Hz
MID-2:	800 Hz – 2.500 Hz
Precense:	2.500 Hz – 8.000 Hz
HIGH:	8.000 Hz – 15.000 Hz

La etapa AGC multibanda -también conocida como "levelers"- controla de manera independiente el nivel en cada banda, pudiendo atenuar el nivel de una banda cuando presenta mucha energía, para evitar que el compresor de esa banda trabaje en exceso; o incrementarlo cuando la señal es baja para que alcance el umbral de compresión. Para esto el MB-AGC define un nivel "referencia" (target) por banda, y compensa las ganancias para que la señal se mantenga siempre en el nivel de referencia.

Los indicadores del MB-AGC muestran la compensación de ganancia en cada banda, que además se muestra en una línea de tiempo.

Ilustración 38: AGC Multibanda

4.5.1 Dynamic EQ (niveles "referencia")

Al igual que el AGC de banda ancha, **cada banda es compensada según un** <u>nivel de referencia</u> (target). Cuando en una banda la señal es mayor que el nivel referencia, el AGC disminuye la ganancia en esa banda; mientras que la incrementa cuando el nivel es menor a la referencia.

La compensación de ganancia máxima aplicada está acotada por el control "ACTION RANGE". El valor expresa en dB la corrección de ganancia máxima que será aplicada en cada banda para aproximar la señal al nivel de referencia.

Ejemplo: ±3dB acota la variación de ganancia en 6dB. La señal será atenuada o incrementada en hasta 3 dB según sea mayor o menor al nivel de referencia.

Los valores de referencia 0dB mantienen el balance espectral promedio de la música. Si se define un nivel referencia por encima de cero, esa banda será enfatizada pues tendrá siempre más energía que las demás, mientras que valores por debajo de cero atenúan la banda. De este modo, los niveles de referencia del MB-AGC permiten definir un perfil de ecualización, basado en las frecuencias de cruce de los filtros de bandas (125 Hz, 800 Hz, 2.5 KHz y 8 KHz).

A diferencia de un ecualizador convencional, que enfatiza o atenúa rangos de frecuencia con independencia de las características de la señal; el MB-AGC se comporta como un EQ dinámico pues reducirá la ganancia de una banda si su nivel está por encima del nivel de referencia, y la amplificará en caso que sea más bajo. Esta técnica equilibra diferencias entre distintos materiales de programa pues si, por ejemplo, un material tiene muchos graves, el MB-AGC atenúa la banda de graves. Si en cambio los graves son débiles, los refuerza, logrando que la presencia de graves sea consistente.

4.5.2 Enlace entre bandas (BAND LINK)

Para que la acción del MB-AGC no genere desequilibrios en el balance espectral, que podrían ocurrir debido a excesiva corrección de una banda respecto a las demás, todas **las bandas están vinculadas a la acción de la banda MID-1**. Cada banda tiene una valor de desviación máximo (en dB) respecto del nivel actual MID-1. Ninguna banda puede presentar una diferencia de nivel respecto a MID-1 mayor que la desviación máxima permitida en esa banda.

Cuando MID-1 modifica su nivel, podrá "arrastrar" a otras bandas incluso aunque estén dentro del nivel de referencia. Por ejemplo: supongamos que la corrección permitida para la banda LOW es de 3dB y para las restantes es de 2dB. Si MID-1 cambia 4dB, arrastrará 1dB a la banda LOW (mantiene diferencia de 3dB) y 2dB a la demás bandas (mantiene diferencia de 2dB).

El usuario define la corrección máxima permitida para cada banda en la sección "BAND LINK".

Ilustración 40: MB AGC - Enlace entre bandas

Para música con predominancia vocal y para los ajustes para micrófonos, conviene que los márgenes de corrección del MB-AGC sea estrechos, del orden de los 2 dB, excepto en la banda de graves que tolera diferencias de 3 a 4 dB (valores convenientes para equilibrar voces y materiales con distintos niveles de graves).

4.5.3 Ataque, recuperación y retención

Cada banda tiene sus tiempos de ataque (Attack), recuperación (Release) y retención (Hold). Estos tiempos interactúan con los tiempos del AGC de banda ancha (WB-AGC).

Los controles actúan sobre la banda seleccionada a la derecha.

En líneas generales, los tiempos de ataque y recuperación del MB-AGC se ajustan para trabajar más rápido que los usados en el WB-AGC. El WB-AGC hace correcciones de nivel globales, mientras que el MB-AGC trabaja sobre variaciones de nivel más bruscas dentro de una rango de frecuencias.

4.6 Compresión dinámica

La reducción de la dinámica se produce por la combinación de tres etapas: compresión; limitación y recorte. Trabajan de forma complementaria para reducir la dinámica de la señal y aumentar la energía promedio. A mayor acción de estas etapas, más "denso" y "compacto" es el sonido. El ajuste de estas tres etapas se debe hacer en conjunto.

A grandes rasgos:

- El compresor trabaja con pendientes de compresión suaves y umbrales bajos. De este modo reduce la dinámica de la señal en un rango amplio de niveles.
- El limitador trabaja con pendientes muy abruptas. Trabaja con niveles de umbral más altos, pero aplica una gran reducción de ganancia y las señales no superan el umbral. Reduce drásticamente el rango dinámico pero su acción puede ser muy notoria (dependiendo de los ajustes de otras etapas).
- Los tiempos de ataque suelen ser más lentos en el compresor, y muy rápidos en el limitador. Esto permite conservar los ataques del sonido que pasan a través del compresor, y solo los picos de mayor nivel son atenuados por el limitador. Todos los ataques que caen debajo del umbral del limitador pasan (depende en gran medida del ajuste DRIVE del limitador) aportando naturalidad al sonido.

4.6.1 COMPRESOR MULTIBANDA

Las 5 bandas de trabajo son las establecidas en el AGC multibanda. Cada compresor es independiente y cuenta con los siguientes ajustes:

UMBRAL (THS)

Establece el nivel de señal (en dB) a partir del cual empieza a actuar el compresor.

En el instante en que la señal alcanza el umbral, entra en juego el tiempo de ataque y luego la atenuación según la relación de compresión.

RATIO

La **relación de compresión** define la atenuación aplicada., en un rango de 1:1 a 10:1. Los compresores trabajan con transición suave (soft knee). Como regla general, cuanto más bajo es el nivel de umbral menor es la relación de compresión, y viceversa. Un umbral bajo y una relación de compresión suave afectará la dinámica de más señales, lo que es necesario para, en combinación con el limitador, alcanzar un sonido denso o muy compacto.

ATAQUE

Es el tiempo que tarda el compresor de banda en actuar, luego de que la señal supera el umbral. Cuanto mayor sea el tiempo de ataque, más "impacto" tendrá esa banda, pero mayor será el recorte producido en el limitador y en el cliper. Esto es debido a que el ataque del sonido "pasa" a través del compresor, por lo que llega al limitador con un nivel elevado.

Los tiempos de ataque se ajustan para cada banda. Para este ajuste nuevamente entra en juego el tipo de material a procesar. En líneas generales, algunos estilos musicales como el rock y el pop, toleran más recorte de impulsos, es decir tiempos más lentos. Esto brinda una gran sensación de rango dinámico (profundidad del sonido e impacto de la percusión). Para lograr mas pegada o "punch" en la percusión, conviene usar tiempos de ataque más lentos en las bandas LOW y M1. Para música orquestal, jazz, piano, conviene usar ataques rápidos.

Recuperación (RELEASE)

Es el tiempo que tarda en recuperar la ganancia unitaria cuando la señal cae por debajo del umbral.

Los tiempos de recuperación son ajustes clave para optimizar la sensación de rango dinámico. En líneas generales; si la recuperación es lenta el compresor actúa prácticamente en todo momento; atenuando el nivel de la banda. Los ataques tienen menos incidencia, pues quedan atenuados durante el tiempo de recuperación. Con tiempos de recuperación muy lentos el compresor actúa de forma similar a un nivelador (leveler), manteniendo la dinámica pero sin generar grandes incrementos en la sonoridad.

Por ejemplo: la música electrónica requiere tiempo de recuperación corto en la banda de graves, para reforzar la pegada del "golpe" (bass drum). El compresor debe recuperarse para que cada golpe sea afectado por el tiempo de ataque. En la banda de agudos sucede lo mismo. Si el tiempo de recuperación es muy lento, el ataque no tiene efecto y los agudos (un Hi-Hat, por ejemplo) pierden impacto. Tiempos de recuperación más rápidos aumentan la presencia de agudos y el "brillo" general, pero pueden producir un sonido áspero para algunos estilos musicales.

RETENCIÓN (HOLD)

Cuando una señal sobrepasa el umbral, dispara la compresión y el compresor disminuye su ganancia. El tiempo de retención sostiene el grado de compresión con independencia del nivel de entrada. Transcurrido el tiempo de retención, la señal se libera según el tiempo de recuperación; o se mantiene comprimida si el nivel permanece encima del umbral.

Cuanto mayor es el tiempo de retención, menos agresivo es el proceso de compresión, pero disminuye la sonoridad.

4.6.2 LIMITADOR MULTIBANDA

Los limitadores trabajan con una relación de atenuación fija del orden de 100:1. Cada banda posee 5 controles que ajustan su acción:

Figura 41: Compresor/Limitador Multibanda

Umbral (THS) y DRIVE

Determinan en el grado de limitación aplicado a cada banda.

El control **DRIVE aplica ganancia a la señal** antes de la limitación, es decir, atenúa o amplifica la señal que entregan los compresores. Equivale al ajuste de NIVEL DE SALIDA de los compresores. Si se aumenta Drive y se mantiene el umbral, más picos de la señal serán limitados, aumentando la energía en esa banda.

El **UMBRAL** cambia el nivel en el cual el limitador comienza a actuar. Si se baja el umbral, aumenta la limitaciópn, pero disminuye la energía de la banda, pues el limitador atenúa más picos de la señal. Para compensar la atenuación producida por el incremento en la limitación se deberá elevar el nivel de esa banda en el Ecualizador de Densidad.

Ataque (ATK), Hold y Release

Los limitadores contienen el impulso en el nivel de umbral. Durante el tiempo de ataque el limitador no acciona y *deja pasar* picos de la señal hacia los recortadores, que los contendrán con recorte suave. Con tiempos de ataque muy rápidos se minimiza el recorte, pero pueden producir un sonido demasiado "chato"; sin dinámica y por lo tanto poco natural.

Los tiempos de recuperación y el valor HOLD accionan del mismo modo que que en los compresores.

4.7 Density EQ y Clippers

El "ecualizador de densidad" permite re-configurar el equilibrio espectral del sonido, dosificando en la mezcla la incidencia de cada una de las bandas.

Tenga en cuenta que cuanto mayor es el nivel de una banda en el EQ de densidad, más cerca estará del umbral del limitador de banda, por lo que aumenta la sonoridad a expensas de reducir la dinámica por recorte suave, lo que genera un sonido más "aspero".

Figura 42: Ecualizador de Densidad

4.7.1 BAND CLIPPERS

Los limitadores de banda son recortadores suaves (soft *clippers*) que contienen los picos que atraviesan la etapa *de compresión* debido a los tiempos de ataque.

Figura 43: Limitadores de banda

Los controles ajustan el umbral de recorte. La indicación "0" (cero) se corresponde con el 100% de la modulación de audio.

- Si se ajusta un **umbral por debajo de cero**, esa banda nunca llegará a modular al 100% por si sola; aunque la modulación podrá alcanzar 100% en la suma de las bandas.
- Si se ajusta un umbral en cero o por encima de cero, no significa que la banda siempre va a alcanzar 100% de modulación, pues eso depende del nivel de señal presente en esa banda, que está determinado por el "Density EQ".

Los **Indicadores de Nivel** muestran el nivel presente en cada banda y la cantidad de **limitación aplicada**.

El nivel de señal en una banda nunca puede superar el umbral del limitador. Por encima del umbral del limitador, el indicador de nivel muestra la cantidad de señal limitada (recortada) en color naranja.

Usualmente los limitadores de banda se ajustan en 100% o hasta 1 dB por debajo de cero, con excepción del umbral de la banda de graves que suele fijarse entre 2 y 6 dB por debajo del 100%, para dejar margen a las otras bandas en la suma final.

4.7.2 Limitador de banda ancha (WB LIMITER)

La suma de las bandas se produce luego del los limitadores de banda. Aunque las bandas estuvieran limitadas al 100%, la suma de las señales limitadas generará nuevos picos en la señal resultante, que estarán por encima del 100%.

La función del limitador de banda ancha es contener los picos generados por la suma de las bandas, limitándolos a 100% de nivel de audio. El limitador "predice" la atenuación necesaria para que la señal quede en 100% y actúa con tiempo de ataque cero (*look ahead*), con lo cual no se genera distorsión armónica. El umbral es fijo a 100% de la modulación de audio. El ajuste de **ganancia de en-**trada (DRIVE) posibilita amplificar la mezcla de bandas, aumentando la acción del limitador de banda ancha y por lo tanto la energía total de audio.

Control "SHAPE"

La limitación en banda ancha aumenta la sonoridad para niveles de reducción de hasta 6dB. Por encima de 6dB no se logran incrementos significativos de sonoridad, y en cambio comienzan a generarse efectos no deseados en el audio, causados por intermoduclación: el sonido se escucha "chato", sin profundidad.

Para poder trabajar con niveles de limitación de banda ancha más elevados, minimizando los efectos no deseados, 542APC implementa un control avanzado de WBL que modifica el comportamiento del limitador introduciendo recorte suave a la señal para niveles elevados de energía. El usuario puede ajustar el grado de acción del control avanzado sobre el limitador, pero el control avanzado solo entra en juego cuando la densidad de picos es elevada, lo que posibilita que su acción quede enmascarada para el oído.

4.7.3 Recortador de MPX (MPX cliper)

En el final de la cadena de procesado, las señales SUMA (L+R) y RESTA (L-R) son recortadas por separado con un recortador suave. El umbral se ubica en el 100% de modulación. El control "DRIVE" es determinante, pues aplica ganancia a las señales suma y resta previo al recortador.

Si DRIVE=0 el recortador prácticamente no tiene incidencia; pero 1dB de ganancia implica 1dB de recorte en la señal. Valores de 0,5 a 1dB son tolerables para la mayoría de los casos. Valores superiores a 1dB pueden usarse pero generan un sonido más áspero, que algunos identifican como "sonido de FM" (*FM style*).

Utilice esta técnica solo si es necesario lograr altos niveles de sonoridad en el aire.

4.8 Gestión de los presets

La unidad cuenta con 16 *presets* de fábrica y 16 memorias libres para que el usuario almacene sus propios ajustes.

- Los presets de fábrica son solo-lectura, no pueden borrarse ni modificarse.
- Los presets de usuario están ajustados de fábrica con un procesado moderado.

CURRENT PRESET	04	U: DEFAULT		
REFERENCE PRESET	09	U: DEFAULT		
COPY REF To CUR		RENAME	SAVE	DISCARD

Figura 44: Presets de procesado

CURRENT PRESET es el ajuste activo, es decir el preset que está sonando al aire.

- REFERENCE PRESET permite cargar una segundo ajuste y ponerlo al aire, con el objeto de compararlo con el ajuste actual. El ajuste de referencia puede sobreescribir al ajuste actual cuando el ajuste actual es una memoria de usuario.
- ON AIR Conmuta el preset al aire entre CURRENT y REFERENCE.

4.8.1 Crear presets de procesado

Los presets se crean en la pantalla SETUP. Para **crear un nuevo preset**, el usuario puede editar en forma directa un preset de usuario; o puede copiar un preset de fábrica y luego modificarlo (recomendado).

MUY IMPORTANTE

Solo se puede editar el preset cargado en CURRENT PRESET cuando está al aire. Cuando la opción REFERENCE está en el aire, la edición se desactiva.

El preset cargado como referencia (REFERENCE) sirve para comparar dos presets, escuchando el sonido al aire y visualizando los valores de los procesos.

Para COPIAR UN PRESET de fábrica se procede:

- Cargar en el campo CURRENT PRESET el preset de fábrica que desea copiar. Cuando se carga un preset solo-lectura en este campo, el botón SAVE cambia a EDIT - Copy to UserMem
- 2. Pulsar EDIT Copy to UserMem. Aparecerá una pantalla para elegir el destino para la copia.
- 3. En esta pantalla también se puede editar el nombre del preset.

4. Pulsar el botón APPLY. EL preset de fábrica será copiado en la posición de usuario elegida. El preset de usuario preexistente se sobre-escribe.

4.8.2 Administrar presets

El Administrador de presets (Preset Manager) se accede desde el menú principal del panel de Control WEB. Permite realizar las siguientes acciones:

- Exportar un preset a un archivo en disco.
- Importar un preset desde el disco.
- Copiar presets de fábrica a las memorias de usuario.
- Renombrar un preset.
- Asignar a un *preset* la propiedad "MONO", que produce la conmutación a MONO de la transmisión.
- Asignar a un preset la propiedad VOICE (preset para las voces)

PRESE	ETS MANAGER			
USER PRESETS				
Number	Name	Ver	Voice Tag	Mono
01	VOICE-SOFT	1.10		
02	VOICE-LOUD	1.10		
03	Dynamic	1.10		
04	DeepBass	1.10		
05	XtendedBass	1.10		
06	CleanLoudness	1.10		
07	MaxLoudness 1	1.10		
08	MaxLoudness 2	1.10		
09	MaxLoudness 3	1.10		
10	The Shining	1.10		
11	ModernHits Loud	1.10		
12	Default	1.10		
13	Default	1.0		
14	Default	1.0		•
15	DeepBass	1.0		
16	MaxLoudness 2	1.0		

Figura 45: Administrador de ajustes

4.8.2.1 Exportar/importar presets

Para exportar un preset proceder del siguiente modo:

- 1. Seleccionar en la lista el *preset* que se desea exportar.
- 2. Pulsar el botón EXPORT (Download)
- 3. El *preset* será exportado a un archivo con nombre **[preset_name].542**. Se genera un archivo por cada preset.
- 4. Los archivos se guardan en la carpeta predeterminada para DESCARGAS del Navegador web.

4.9 Presets: ajustes de sonido

Los presets almacenan ajustes de los procesos y configuraciones que determinan el sonido de la radio al aire.

Los presets de fábrica fueron creados para cubrir distintas necesidades de las estaciones de radio. Hay ajustes que priorizan la calidad del sonido, ajustes que priorizan lograr máxima sonoridad, ajustes con refuerzo de graves, de agudos, optimizados para la palabra, etc. Los ajustes del 01 al 03 son ajustes para voces. Los ajustes del 04 al 13 son de propósito general y están organizados por nivel de sonoridad, de menor a mayor. El usuario puede modificar los ajustes de fábrica y crear sus propios ajustes, como se explica más adelante.

Al elegir y ajustar los programas de procesado de audio, tener en cuenta si se trata de un único programa para todo el día; o si se usará la conmutación por micrófono activado, o por rango horario. En el primer caso se deberá emplear un ajuste de compromiso compatible con todos los tipos de voces y de música que maneja la emisora. La conmutación automática de procesado elimina los compromisos pues cada ajuste será el óptimo para ese tipo de música o de voz. Esto además reduce la fatiga auditiva asociada con las estaciones de radio que emplean procesadores rígidos, sin control programable.

A continuación se describe en detalle la naturaleza de algunos ajustes. Recomendamos leer con atención las siguientes explicaciones.

4.9.1 AJUSTES PARA VOCES

VOICE SOFT/MID/LOUD están ajustados para procesar voces. Cuando se habilitan los micrófonos en el Estudio, el 542APC puede conmutar de programa para procesar el audio con un ajuste diseñado para las voces

Conmutar el preset al abrir micrófonos: 3.11.1 – GPIO config

La principal diferencia de estos ajustes, respecto a los ajustes para la música, está en los tiempos de ataque y recuperación de los AGC, de los compresores y del limitador de banda ancha.

AGC de banda ancha

Debe recuperarse lo suficientemente rápido como para compensar, por ejemplo, una comunicación telefónica que llega con poco nivel. Esto se logra con los ajustes de la ventana rápida, pues si los tiempos globales del WB AGC son muy rápidos provocará fluctuaciones de nivel audibles.

El **umbral de retención** (HOLD) se ajusta en valores entre 6 y 8 dB más altos que los usados para música, para evitar cambios constantes de nivel. Para este ajuste se utilizó como material de programa una combinación de voces y piezas que alternan palabra y ráfagas de música.

El ataque del **WB AGC** también debe ser rápido, pero un tiempo muy rápido provocará cambios de nivel audibles por causa de gritos o carcajadas que pueden ocurrir frente al micrófono en algunos tipos de shows. La acción del AGC debe pasar inadvertida.

AGC multibanda

No debe tener mucho rango de corrección, entre 2 y 3 dB. El enlace entre bandas no debe ser mayor a 3 dB para evitar desbalances en el espectro, salvo para la banda de graves que tolera diferencias de 4 a 5 dB. Esto en ocasiones es conveniente pues ayuda a **equilibrar la presencia de graves entre distintas voces**. Recordar además que el EQ Dinámico del MB AGC se puede usar para definir un perfil de ecualización.

Limitadores

Su ataque debe ser rápido, fundamentalmente en la banda LOW, para contener los grandes impulsos que tienen lugar en los ataques de la palabra. Los compresores también deben tener tiempos rápidos pero se toleran hasta 35 mS en la banda de graves. Si los tiempos de ataque son muy lentos, puede producirse excesiva acción del limitador o recorte en los clipers en ciertas entradas de la voz; que sonará "saturado" o "sucia" durante un breve instante (luego de cada pausa mayor al tiempo de recuperación).

Sobre los tiempos de recuperación hay mas libertad de acción, por lo que serán ajustados según el tipo de voces que maneje la emisora. Como regla general, tiempos de recuperación lentos producen un sonido más "suave" y natural, mientras que con tiempos rápidos se aumenta la sonoridad pero el procesado se vuelve más agresivo (mayor compresión).

Respecto a las ganancias (DRIVE) de los limitadores, las voces no toleran demasiada compresión multibanda. Un excesivo procesado le quitara naturalidad a las voces.

PARA TENER EN CUENTA

- Cuando cree un ajuste para voces, tenga en cuenta que el perfil de ecualización no debe alejarse mucho del ajuste utilizado para la música. Es decir, conviene ajustar el ecualizador de densidad en el ajuste para voces para mantener el perfil de ecualización usado en el ajuste de procesado para la música.
- Cuando se usa la conmutación de presets por GPI, se recomienda los procesos SUPER BASS y STEREO ENHANCER permanezcan en el mismo estado en ambos presets. El realce estéreo (Stereo Enhacer) no tendrá efecto sobre las voces dado que estas son monoaurales (la misma señal en ambos canales) pero sí sobre la música de fondo que puede estar sonando en el momento de la transición.

4.9.2 SOFT PROCESSING

Es el ajuste más "suave", de mayor dinámica y menor sonoridad, pensado para música orquestal, jazz y con predominancia de instrumentos acústicos. Busca mantener la el equilibrio de la mezcla original; manteniendo la expresión dinámica dentro de las limitaciones propias de la transmisión en FM.

Para esto se ajustan los compresores y limitadores multibanda con umbrales altos para producir menor compresión, permitiendo usar tiempos de ataque más lentos. El Density EQ trabaja en el orden de los -4dB, dando lugar a un mayor rango dinámico, a expensas de una menor sonoridad. Recordar que una excesiva compresión multibanda puede ocasionar un desequilibrio espectral que es muy audible en la música Jazz y de orquestas. Por el tipo de instrumentos, y los planos sonoros que se manejan en estos géneros musicales, un buen oído juzgará excesivo un nivel de procesado que resultaría correcto en rock & pop.

Los tiempos de las bandas MID-2, Presence y HI requieren especial atención, ya que hay mucha participación de instrumentos solistas. Sus tiempos de recuperación deben ser similares, de lo contrario pueden ocurrir modulaciones de timbre.

El ajuste refuerza sutilmente los graves. La dinámica del bajo se mantiene con tiempo de recuperación de 0,5 segundo para la banda LOW.

Las altas frecuencias no se enfatizan. Se busca priorizar la calidez, "nitidez" y definición de los instrumentos por sobre el "efecto brillo". Por tal motivo el tiempo de recuperación de la banda de agudos (HI) es relativamente lento. Tenga en cuenta que el oyente siempre puede enfatizar los agudos en su sintonizador si así lo desea.

Respecto a las voces, este ajuste no logrará voces de gran impacto, con graves "pesados", debido a que trabaja con poca compresión multibanda. Se recomienda usar conmutación GPI y usar Voice-Soft para procesar voces.

4.9.3 DeepBass/XtendedBass

Ambos ajustes enfatizan los graves. DeepBass refuerza los graves profundos propios del material, en frecuencias alrededor de 96 Hz, y mantiene la "pegada" (punch) liberando el umbral de compresión en la banda LOW y llevando el cliper de esa banda casi a 100% (0,25dB). XtendedBass usa el proceso "SuperBass" para extender y reforzar las bajas frecuencias en la zona de mediosgraves (100 – 300 Hz).

Mientras que el primer ajuste refuerza bajos que rinden en parlantes/auriculares con buena respuesta en graves, el segundo es apropiado para forzar la presencia de graves en sistemas con parlantes pequeños.

4.9.4 Vocal Music

Estos ajustes están creados con música en la que predomina la voz en en primer plano. Se han usado piezas orquestadas y música con bases rítmicas. El objetivo es mantener el rango vocal "suave" para obtener voces "limpias" y definidas. El MB AGC tiene su acción muy acotada, para evitar coloraciones y cambios bruscos de nivel debido a la dinámica de nivel que presentan muchas canciones con predominancia de las voces.

Los tiempos de recuperación de los compresores son un ajuste clave. Cuando son muy rápidos, las voces pueden sonar "ásperas", perdiendo naturalidad.

4.9.5 MaxLoudness

Estos son los ajustes que brindan mayor sonoridad. El objetivo principal fue lograr una gran sonoridad al aire, cuidando producir la mínima distorsión posible. En ajustes de máxima sonoridad el equilibrio espectral puede verse alterado pues se enfatizan frecuencias del rango medio. La dinámica se reduce fuertemente para lograr altos niveles de energía promedio.

Los ajustes MaxLoudness 1, 2, y 3 son de uso general, pues responden bien con diversos estilos de música. Usan distintos niveles de recorte en MPX (overdrive).

MaxLoudness-3 fue creado con hits pop de las últimas década, con fuerte presencia de bases rítmicas electrónicas y sintetizadores, y niveles muy altos de sonoridad propios de los criterios usados en la masterización.

La combinación de una compresión dura con ganancias altas ocasiona un sonido compacto, que al aire puede sonar "áspero". Muchas estaciones de FM que priorizan sonoridad frente a nitidez y definición buscan especialmente este tipo de sonido.

4.9.6 Presets optimizados para ITU BS.412

Los presets "BS412 Hi End" y "BS412 Punch" están optimizados para ser usados cuando se emplea el control de potencia MPX ITU BS.412, obligatorio en muchos países europeos. Sin embargo, también pueden ser usados con el control BS.412 apagado.

Las emisoras bajo regulación BS.412 pueden usar cualquiera de los presets de fábrica, pero los presets optimizados aprovechan mejor el rango dinámico que se genera entre la relación de potencia MPX y la modulación 100%.

Además, estos presets están ajustados de forma nativa con pre-énfasis de 50 mS.

Sección 5

Equipos con servicios AoIP

(opciones STREAMING y DANTE AoIP)

5.1 Resumen de prestaciones

Los procesadores de la serie 542APC soportan dos tipos de expansiones para manejo de audio sobre redes.

- Estas opciones son excluyentes, no pueden instalarse juntas.
- Estas expansiones pueden venir instaladas de fábrica, o pueden ser instaladas con posterioridad a la compra.
- Son soportadas solo por equipos con número de serie que comiencen en AD o posteriores.

5.1.1 Opción STREAMER (542APC /AoIP)

Incorpora las siguientes prestaciones:

- Generación de un streaming RTP saliente (para enlace estudio-planta).
- Generación de un streaming saliente hacia servidores lcecast/shoutcast.
- Decodificación de un streaming entrante (normalmente usado para establecer un enlace punto a punto con la planta transmisora).
- 4. Monitoreo remoto de audio vía WEB.
- Acceso remoto directo simplificado; a través de un enlace público de Internet (no requiere IP estática ni re-direccionamiento de puertos).
- 6. Actualización simplificada del firmware.

5.1.2 Opción DANTE/AES67 (542APC /A67)

- Es una interfaz Dante 2 x 2, pensada para conexión a redes AoIP en estudios, para casos en los que el enlace a planta transmisora envíe señal procesada o MPX (recomendado) o el procesador se utilice en estudios de streaming.
- 2. Salida estéreo: envía la señal procesada.
- 3. Entrada estéreo.

MONTAJE

Los módulos de expansión se pueden adquirir por separado. Si bien su montaje es sencillo, requiere desconectar y abrir el equipo. Se recomienda que la instalación sea llevada a cabo por personal técnico calificado.

Consultar el **Manual de opcionales y desarme**: disponible en <u>www.solidyne.ar</u>

5.2 Equipos con opción streamer

5.2.1 Accediendo desde una LAN

¡ATENCIÓN!

LOS PROCESADORES EQUIPADOS CON EL MÓDULO STREAMER AOIP CUENTAN CON 2 PUERTOS ETHERNET:

ETHERNET CONTROL \rightarrow interfaz web ETHERNET AoIP \rightarrow audio stream

1. Conecte el puerto **ETHERNET AoIP** a la LAN usando un cable UTP CAT5.

De fábrica, el modulo trabaja en DHCP. Al ser conectado el *router* le asigna una dirección IP. Cuando la conexión es exitosa, el LED verde del RJ45 ETHERNET AoIP queda destellando.

 Para conocer la dirección IP asignada al módulo Streamer AoIP, es necesario descargar e instalar la aplicación "Solidyne Multi-Discovery", disponible en el siguiente enlace:

SOLIDYNE MULTI-DISCOVERY

https://www.solidynepro.com/DW/IP.exe

El archivo es un instalador estándar. Al ejecutarlo instala la aplicación y crea en el menú Inicio la carpeta "Solidyne Discovery", con los accesos a la aplicación y sus instrucciones.

📑 Solidyne Multi	Discovery		0 0 0
	Solidvn	e Multi	Discovery Acerca de Solidyne
Protocolo	Su direcci		Network interface:
Solidyne	▼ 192.168.0		192.168.0.121 • Discover
P	Host name	MAC Address	Extra Info
192.168.0.103	UX18	60-8A-10-74-C1-E3	Devid:UX18-APP:UX18_AA-AppVer:1.01-FWver:1
192.168.0.124	542APC	40-84-32-16-73-E3	Devid:542-APP:5BANDFM_AD-AppVer:2.11-FWv(
192.168.0.92	Discovery		

- 3. Desplegar el menú *Protocolo* de Multi-Discovery elegir *IP Audio Module*
- Pulsar el botón *Discover* para encontrar el modulo STREAMER AoIP. El equipo aparecerá en la ventana de resultados.
- 5. Doble click sobre el equipo que aparece en la ventana abre la interfaz web en el navegador predeterminado.

También se puede ingresar manualmente la dirección IP en un navegador web (preferentemente Google Chrome).

6. Una vez que accedemos al módulo, procedemos a la configuración según el caso (ver más adelante).

5.2.2 Accediendo remotamente vía Internet

Para acceder desde una locación remota a la red local, vía Internet, los equipos 542APC equipados con la *expansión STREAMER AoIP* cuentan con un **servicio de re-direccionamiento** que simplifica el acceso evitando configuraciones avanzadas como abrir puertos y configurar/contratar direcciones IP estáticas.

ATENCIÓN! Este servicio brinda acceso a la interfaz web para control y ajuste del equipo. **No permite establecer un enlace de audio** contra el procesador.

El servicio de redireccionamiento es brindado por terceros y requiere activar una cuenta de acceso. Solidyne brinda sin cargo una activación para uso temporal, que limita el tiempo de conexión a 4 horas.

5.2.2.1 Activar el re-direccionamiento

- 1. Acceder al equipo desde una LAN.
- 2. En la opción de menú SYSTEM acceder a la pestaña Internet Access.
- 3. Conmutar el botón de activación a ENABLE.

- Solicitar la activación de la cuenta enviando un correo a <u>soporte@solidyne.ar</u>, con los siguientes datos:
 - Motivo: alta de cuenta ZROK para acceso remoto.
 - Cuenta de e-mail a registrar.
 - Número de serie del procesador.
- Recibirá una clave que debe ser ingresada pulsando la opción ENTER KEY de la pantalla Internet Access.

IMPORTANTE

El servicio gratuito ZROK habilita una sesión de 4 horas. Para acceso continuo al procesador, se deberá contratar el servicio de manera particular. ZROK es de un proveedor externo, sin ninguna relación con Solidyne.

5.2.3 Interfaz de control integrada

Los procesadores 542APC equipados con el módulo *STREAMER AoIP* cuentan con una interfaz de control integrada que permite **acceder desde una única pantalla las opciones de stream de audio y la interfaz de Control WEB**.

La **pantalla de acceso** solicita **usuario y contraseña**. Se puede acceder con usuarios BASIC o ADMIN.

contraseña predeterminada → 1234

La contraseña es la misma que se define para el acceso desde la pantalla de hardware.

	Login to access
542 AoIP Streaming interface access	Incorrect user or password. Try again basic or admin
] :tuges ((EEEE)) () •0 542 []	password
HostName: 542-AoIP MAC-ADDR: 00:1E:06:48:6B:6D	LOG-IN

- Si se accede con usuario BASIC, se habilita solo el acceso a REMOTE CONTROL (configuración de audio, MPX y recepción).
- Si se accede con usuario ADMIN, se habilitan todas las opciones de configuración (incluye configuración del audio stream).

Al acceder se presenta la **pantalla inicial o "HOME"** de la interfaz integrada, que presenta las siguientes opciones:

HOME:	Carga la pantalla actual.
STREAM CFG:	Carga las opciones para configuración de los servicios de streaming (ver a continua- ción).
REMOTE CNTRL:	Carga la pantalla para configuración remota de los parámetros del procesado y del mo- nitor de modulación.
SYSTEM:	Muestra opciones de configuración de la red local para el puerto Ethernet de control, información del sistema y la configuración para acceder al equipo externamente vía In- ternet. Ver más adelante en esta sección.
UPDATE:	Actualización simplificada del firmware. Ver más adelante en esta sección.
REMOTE PLAYER:	Permite escuchar el audio del procesador a través de la red local e Internet. Ver más adelante en esta sección.
LOG OUT:	Cierra la sesión del usuario y retorna a la pantalla de ingreso.

5.2.4 Audio stream (STREAM CFG)

La configuración de los servicios de *audio stream* se accede desde la opción de menú **STREAM CFG**; que presenta las siguientes opciones:

- UP-STREAM (Tx)
- RTP-LINK (Tx)
- DOWN-STREAM (Rx)
- REMOTE PLAYER
- SERVICE CFG

5.2.5 ENLACE (STL) / DOWN-STREAM RTP

Se describe en primer lugar la recepción de AUDIO STREAM porque usualmente se utiliza para establecer conexión entre el procesador y los estudios de la emisora (STL por Studio to Transmitter Link).

Concepto:

El procesador recibe un stream de audio RTP generado por un codificador en los estudios (por ejemplo una consola Solidyne DX816; línea UNIDEX u otros).

5.2.5.1 Acerca de la configuración de la red

Hay distintas configuraciones que permiten conectar en red dos equipos ubicados en distintas locaciones. La instalación y configuración de la red escapa a este manual. Consultar con técnicos especializados.

A modo de referencia mencionamos dos casos generales:

Enlace punto a punto:

Dos redes de dos locaciones distintas se conectan directamente (de forma inalámbrica o con fibra óptica) para conformar una única red local (LAN) -hay empresas que se dedicar a proveer estos servicios-.

En este esquema el procesador está físicamente en la misma red que el CODEC o equipo transmisor. No interviene Internet en este caso.

El enlace de datos punto a punto puede ser físico a través de una Intranet (fibra) o inalámbrico mediante enlaces de microondas; trabajando en la banda de comunicaciones WI-FI o WI-Max 5,8GHz. Estos enlaces tienen alcance de hasta 50Km y costos bajos por ser equipos fabricados en grandes series. La banda de 5,8 GHz es de uso libre para transmisión de datos.

Enlace vía Internet

En este caso, dos redes separadas se conectan vía Internet. La configuración de la red es más compleja, porque requiere montar una VPN usando routers que las soporten; o contar con direcciones IP externas fijas y usar direccionamiento de puertos.

La configuración del equipos codificador puede cambiar dependiendo de la arquitectura de red usada. El siguiente documento resume las opciones para el caso de redes montadas sobre Internet.

RTP_AudioStream_Link(STL)_requirements

Figura 46: Diagrama de bloques general con enlace vía RTP

El procesador 542ATP se comporta como receptor pasivo y recibe un stream de audio RTP proveniente de cualquier equipo o encoder que emita en un **formato de audio compatible**. Solo se deberán configurar el protocolo; el puerto y la dirección IP por la que ingresa el *audio stream*.

- Siguiendo el ejemplo plantado, se asume que el procesador está correctamente conectado a la misma LAN que el equipo codificador, a través de su puerto Ethernet AoIP.
- En la Pantalla General de Estado elegir la opción STREAM CFG.

3. Elegir la pestaña DOWN-STREAM (Rx).

- 4. Activar la recepción con el control **RUN/STOP** en la posición RUN.
- 5. En el campo PROTOCOL elegir RTP.
- En el campo SERVER URL/IP ingresar la dirección IP del equipo codificador (el que genera el streaming desde el Estudio).

También es posible ingresar IP 0.0.0.0 para que el equipo reciba desde cualquier dirección IP que transmita al puerto UDP declarado.

- 7. En el campo PORT ingresar el **puerto UDP** por el que llega el streaming RTP (el mismo definido en el codificador).
- Verificar que el lado codificador esté generando un stream en un formato de audio compatible (PCM 44.1 kHz o MP3 CBR/VBR 96-320 kbps).
- 9. PATH/MOUNT POINT no se utiliza para RTP. Dejar en blanco.
- 10. Pulsar "APPLY" para confirmar los valores.
- El procesador comienza a recibir el audio desde los estudios. El nivel de la señal se muestra en pantalla.

5.2.5.3 Configuración RTP en los estudios

Cualquier equipo que capaz de generar un *stream* de audio via RTP puede ser usado para transmitir hacia el procesador. Los ítems a configurar son:

- Recordar que en este ejemplo el equipo codificador se encuentra dentro de la misma LAN que el procesador. En otras arquitecturas de red la configuración puede diferir.
- El codificador se configura para enviar audio vía RTP hacia la dirección IP del módulo STREAMER del 542APC. Vimos como conocer la IP de módulo streamer en 5.2.1 – Accediendo desde una LAN).

- 3. También se debe configurar un número de PUERTO UDP (por ejemplo 3030).
- 4. Formato de audio: el equipo codificador determina el formato de audio usado para la transmisión. El formato de audio debe ser compatible con el 542APC, de lo contrario la conexión no se establece. El 542APC puede recibir audio RTP en los siguientes formatos:
 - PCM 44.1 kHz con latencias del orden de 15 a 40 mS
 - MPEG Layer-3 (mp3) VBR/CBR 96/320 kbps.

MPEG se recomienda cuando la transmisión se hace vía Internet. Permite establecer enlaces con poca exigencia de ancho de banda (0,5 Mbps para 192 kbps) pero introduce tiempos de retardo del orden de 200 a 500 milisegundos.

RETARDO EN LA TRANSMISIÓN Y MONITOREO CUANDO EL ENLACE ESTUDIO-PLANTA INVOLUCRA RETARDOS MAYORES A 15 MILISEGUNDOS, NO ES POSIBLE EL MONITOREO EN LOS ESTUDIOS SINTONIZANDO LA TRANSMISIÓN DE AIRE. Quienes hablan al aire en el estudio perciben el retardo como un "eco" en los auriculares, que dificulta la tarea de los oradores. En estos casos, se puede emplear un procesador auxiliar en el Estudio para procesar una salida directa de

consola y usarla en el circuito de monitoreo. No es necesario el mismo nivel de sonoridad que al aire, pero conviene que sea similar en cuanto a compresión y dinámica.

Tenga en cuenta que al retardo introducido por el enlace, se le suma la latencia propia del 542, del orden de los **9 mS**.

5.2.6 Recepción de streaming público

El módulo STREAMER AoIP puede recibir streamings públicos con protocolo HTTP o MMS, codificados en PCM 16 44.1/48 kHz, MP3 u OPUS.

Esta fuente de audio puede operar como entrada principal, o como respaldo cuando se utiliza una entrada física (analógica o AES3) como entrada principal.

Para configurar la recepción de streaming, se procede:

- 1. En la Pantalla General de Estado elegir la opción STREAM CFG.
- 2. Elegir la pestaña DOWN-STREAM (Rx).
- 3. Activar la recepción con el control **RUN/STOP** en la posición RUN.
- En el campo PROTOCOL elegir HTTP o MMS según corresponda.
- En el campo SERVER URL/IP ingresar la dirección HTTP/MMS del streaming que se desea reproducir.
- 6. **Pulsar "APPLY"** para confirmar los valores.
- 7. El procesador comienza a recibir el streaming. El nivel de la señal se muestra en los indicadores correspondientes.

5.2.7 UP-STREAM (Icecast/Shoutcast Tx)

La pestaña UP-STREAM (Tx) permite configurar la emisión hacia un servidor de medios de tipo **Icecast o Shoutcast**.

UP-STREAM (Tx)	RTP LINK (Tx)	DOW	N-STREAM (Rx)	RE	MOTE PLAYER	SER
RUN STOP	2	ICECAST / :		_OAD		PROCE
		PROTOCOL	ICECAST-2		J	
SERVER URL / IP	masstreaming.online			PORT	8386	
PATH / MOUNT POINT	/stream			tream NAME	UX18 en Stream	
CODEC	MPEG Layer3			Password	VEXY685	
QUALITY	160 Kbps			CANCEL		APPLY

Imagen 47: Streaming de subida

- RUN/STOP: Inicia o detiene la subida hacia el servidor cuando se confirman los cambios con APPLY. Para optimizar los recursos del sistema, mantener detenido cuando el servicio no es utilizado.
- PROTOCOL: Define si el servidor utilizado es de tipo Icecast o Shoutcast.
- SERVER IP: Dirección IP del servidor Icecast/Shoutcast.
- PORT: TCP de escucha para el servidor.
- MOUNTPOINT: Nombre único que identifica al stream en el servidor lcecast/shoutcast.
- Stream NAME: Nombre que identifica al stream.
- PASSWORD: Clave de acceso para publicación en el servidor (si corresponde).
- CODEC: Define el formato de audio entre MP3 u Opus.
- QUALITY: Tasa de bits para la codificación.
- APPLY: Aplica y guarda los cambios e inicia o detiene la emisión (según estado RUN/STOP).

NOTA

Los parámetros de configuración para leceast/shoutcast son dados por el proveedor del servidor.

5.2.8 RTP LINK (tx)

La pestaña RTP LINK presenta las opciones de configuración para **enviar audio a una dirección IP** específica. Permite crear enlaces punto a punto a través de una red local o a través de Internet. Por ejemplo para enlazar a un segundo estudio, a una estación repetidora o a la planta transmisora (STL) cuando el procesador se encuentra en los Estudios.

La implementación de un enlace RTP requiere conocimientos avanzados en configuración de redes.

UP-STREAM (Tx)	RTP LINK (Tx)		Rx)	REMOTE PLAYER	
RUN STOP	•	RTP LINK			
DEST. IP	192.168.0.111		PORT	3030	
CODEC	MPEG Layer3		Payload Type	14	
QUALITY	192 Kbps		GPO	None	
			CANC	EL	AP

Imagen 48: Streaming RTP

RUN/STOP: Inicia o detiene el streaming vía RTP cuando se confirman los cambios con APPLY. Para optimizar los recursos del sistema, mantener detenido cuando el servicio no es utilizado.

DEST IP: Dirección IP destino.

PORT: Puerto TCP de transmisión.

CODEC: Formato para RPT. Soporta PCM, Opus y MP3.

QUALITY: Permite definir el bitrate para Opus y MP3 (en valores entre 96 a 320 kbps) o la frecuencia de muestreo para PCM (32; 44.1; 48 kHz).

PLAYLOAD: Es un valor numérico relacionado con el formato de audio. Es utilizado por el software de recepción.

5.2.9 Escucha remota

Esta facilidad está disponible solo en los modelos 542APC /AoIP. Permite escuchar a través de la interfaz web la señal de audio del procesador, lo que habilita la escucha remota vía red.

Cuando se accede **desde una terminal de la red** local no se requieren configuraciones avanzadas. El reproductor remoto reproducirá audio a través de la LAN.

Cuando se accede al equipo vía Internet, dependiendo de la infraestructura de la red, puede ser necesario configurar un servidor TURN. En estos casos el reproductor se conecta pero no obtiene audio, reportando al usuario que no es posible la conexión y se debe configurar un servidor TURN (consultar con un técnico especializado para obtener estas configuraciones).

El reproductor remoto se puede lanzar tanto la pantalla HOME como desde la pantalla **REMOTE CONTROL** (dirección IP de control).

El audio transmitido se toma de la **salida Ethernet AoIP**, que se puede conmutar entre la señal procesada o la salida del sintonizador interno.

El audio se envía a través de un servicio WebRTC. En STREAM CFG \rightarrow REMOTE PLAYER se accede a información relativa a WebRTC. El formato de audio es Opus. El usuario puede cambiar la tasa de bits en un rango entre 128 y 320 kbps.

5.2.10 Services config

Es una pantalla informativa que no puede ser modificada por el usuario. Muestra una matriz de asignación de señales que permite visualizar las entradas y salidas asignadas para cada servicio de streaming.

Los streamings salientes, incluido el REPRODUCTOR REMOTO, toman señal de la salida Ethernet AoIP.

5.2.11 Actualizaciones simplificadas

Los equipos equipados con la expansión *STREAMER AoIP* incorporan un método simplificado para actualización del firmware, que descarga automáticamente los paquetes de actualización, dejándolos listos para ser instalados cuando el usuario lo disponga.

Las actualizaciones permiten:

- ✓ Optimizar los procesos
- ✓ Agregar nuevos procesos y funciones.
- ✓ Mejorar o modificar la interfaz gráfica del usuario.
- ✓ Agregar nuevos ajustes de procesado (presets)

La versión y modelo actuales **se muestran en la pantalla de inicio** del panel frontal del equipo, en la línea superior de la pantalla REMOTE CONTROL, y en la propia pantalla UPDATE.

El equipo se puede actualizar estando en servicio. Dependiendo el tipo de actualización, se podría ocasionar una **breve interrupción de audio** al aire (menor a 2 segundos).

5.2.11.1 Procedimiento

IMPORTANTE

El siguiente procedimiento es solo válido para equipos con la expansión STREAMER AoIP. Para actualizar equipos que no posean esta opción, ver 2.7 – Actualizaciones y modelo

Para actualizar desde la interfaz de control web integrada, se procede:

 Acceder a la dirección IP del módulo Streamer AoIP usando una computadora conectada a la misma LAN que el 542APC.

También es posible hacerlo accediendo al 542 de manera directa (ver 5.4 Acceso remoto vía Internet).

- 2. En la página de acceso, loguearse como usuario ADMIN.
- 3. Acceder a la opción de menú UPDATE.
- En el sector derecho se cargará la pantalla de actualizaciones. El equipo automáticamente verifica si hay disponible una actualización del software. Si hay actualizaciones disponibles, aparecerá un listado con los detalles.
- Las actualizaciones nunca se instalan de forma automática. El botón INSTALL se habita para que el usuario inicie el proceso de actualización cuando lo disponga, con un simple click.
- El procesador permanecerá operativo en el aire durante la actualización. Habrá una breve interrupción (menor a 2 segundos) cuando el equipo se reinicie.

¡ATENCIÓN!

NO APAGUE NI DESCONECTE EL EQUIPO DE LA RED. PODRÍA PRODUCIR DAÑOS NO REPARABLES POR EL USUARIO.

5.3 Modulo DANTE/AES67

Esta expansión brinda conectividad a redes AoIP DANTE, con un envío **estéreo** y una **entrada estéreo**. Los equipos equipados con esta opción no pueden tener a la vez la expansión STREAMER.

La conectividad DANTE se utiliza en configuraciones en en las que **el procesador se ubica en los estudios de la emisora**. Cuando el procesador se instala alejado, por ejemplo en la planta transmisora, es recomendable usar la expansión *STREAMER AoIP* para recibir el streaming de audio.

El equipo con opción DANTE/AES67 se conecta al switch de la red DANTE a través del conector **RJ45** "Ethernet AoIP" ubicado en el panel trasero.

DANTE CONTROLLER (Audinate®) lo reconoce como una interfaz del estándar DANTE.

Ingresando a la interfaz de **control remoto WEB** en modo SETUP se accede las pantallas de ajuste de las entradas y salidas, donde es posible ajustar los niveles de audio.

El nivel de envío DANTE se ajusta desde la pantalla AUDIO OUTPUTS con el control ETHERNET AoIP.

La fuente de audio se puede cambiar entre la señal procesada o la salida del receptor de FM.

El nivel de señal que ingresa por DANTE se ajusta desde la pantalla AUDIO INPUTS con el control ETHERNET AoIP.

Sección 6

Especificaciones técnicas

INPUTS

Stereo balanced on XLR3 connector Nominal level +4 dBu. Max level +22 dBu, software adjusted Stereo balanced on RJ45 (compatible StudioHUB) software adjusted Nominal level +4 dBu. Max level +22 dBu

Digital AES-3 input transformer balanced 0 VU = -12 dBFS

Sample rate 44.1 kHz - 48 kHz

Optional stereo AoIP for LAN Ethernet or Internet streaming

RF Input: Digital Receiver for FM Monitor and Audio Analyzer

VOICE/ MUSIC change: $\mbox{GPI}=+5V$ / +15V for VOICE preset (On-Air microphones). Voice/Music switch received from console in /AoIP models

OUTPUTS

Analog Balanced on XLR connector +4 dBu; Z= 600, Max +18 dBu, Flat frequency response. Analog unbalanced RJ45 output (compatible StudioHUB) +4 dBu/600 ohms.

Digital AES-3 transformer balanced 0VU at -12 dBFS

MPX-1 & MPX-2 for FM transmitters (Normal & Emergency) 0 - 5,5 Vpp Independent level software controlled, Z=50 Ohms Differential output, BNC connector, floating ground 50 ohms Allows 45 dB canceling buzz & noise due to ground loops Protected for electrical storms 2 kV overload

Optional **AoIP** processed digital output in /AoIP models. It allows for direct audio streaming or for streaming connection.

IN/OUT Control

Automatic fold-back to switch the input in case of absence of signal in the main input.

GPI for voice processing conmutation

GPO to trigger external devices

Frequency response

ANALOG BAL = 20 - 16 KHz +/- 0,3 dB AES to AES = 20 - 16 KHz +/- 0,3 dB Measured below compression & limiter threshold

Harmonic distortion

ANALOG BAL = Below 0,005 % @ 1 KHz AES to AES = Below 0,002 %

Dynamic Range ANALOG BAL to ANALOG BAL = 95 dBA AES to AES = 110 dBA

Stereo separation

> 80 dBA

Subsonic filter Chebyshev 4th order, Selectable: OFF - 40 Hz

Asymmetry cancelling 5:1 cancelling reduction using Khann-Bonello method

Expander Software controlled with user settings

Multiband compressors

From 5 to N bands, scalable by firmware. Linear Phase crossover Software adjustable automatic attack and release time

EFFECTS

Super BASS effect and Stereo Enhancer is standard in all software versions Linear limiters with predictive technology (Look Ahead)

Latency

9 mS (typical)

POWER

115 V / 230 V (rear switch selected) 50/60 Hz, 20W

DIMENSIONS

19" rack mount. Module one (44,4 mm) // weight 3 Kg Net; (4 Kg for courier freight)

DSP STEREO CODER

DIMENSIONS

Two MPX outputs with individual remote level control by LAN or Internet Differential output, BNC connector, floating ground 50 ohms. Allows 45 dB canceling buzz & noise due to ground loops Level of each output adjustable from 0 to 5,5 Vpp

FREQUENCY RESPONSE

20-15.000 +/- 0,2 dB, plus 16 Khz/linear phase filter Attenuation at 19 Khz > 80 dB

THD

From 30-12.000 Hz, below 0,01 % Measured using Belar Digital Stereo decoder DSD-1A and Tektronix Spectrum Analyzer

S/N

Better than 85 dBA with reference to 100% modulation. Measured using Belar Digital Stereo decoder model DSD-1A19" rack mount. Module one (44,4 mm) // weight 3 Kg Net; (4 Kg for courier freight)

STEREO SEPARATION

>65 dB at 1 Khz

38 Khz SUPRESSION Below -80 dB Ref 100% modulation

57, 76 & 95 Khz SUPRESSION

Below -80 dB Ref 100% modulation

PILOT TONE STABILITY

+/- 0,002 % (+/- 0,5 Hz)

INTEGRATED RDS ENCODER

RDS / RBDS SIGNAL

Conforms to CENELEC EN50067 / EN 62106 / Control interface based on ASCII commands and UECP protocol Built-in weekly scheduling

RDS SIGNAL BANDWIDTH

+/- 2.4 kHz (50 dBc)

SPURIOUS SUPPRESSION

>90 dB

HARMONICS SUPPRESSION

>80 dB

CLOCK REFERENCE

Pilot Tone

19KHz PILOT PLL LOCK BANDWIDTH

+/- 2 Hz

DATA CONNECTOR: ETHERNET PORT

RJ45 connector for TCP/IP LAN Ethernet Text features include dynamic PS, parsing, scrolling, fixed messages, scheduling and reading from HTTP.

DATA PORT SPEED

2400 - 9600 BPS

SUPPORTED SERVICES

PI Program Identification, M/S Music/Speech, PS Program Service, PIN Program-Item Number, PTY Program Type, ECC Extended Country Code, TP Traffic Program, RT Radiotext, AF Alternative Frequencies, TDC Transparent Data Channels TA Traffic Announcement, IH In House Applications, PTYN Program Type Name, ODA Open Data Applications, DI Decoder Identification, CT Clock-Time and Date, EON Enhanced Other Networks information